Dynamics of a Stimulation-evoked ECoG Potential During Stroke Rehabilitation - A Case Study

Armin Walter, Georgios Naros, Martin Spüler, Wolfgang Rosenstiel, Alireza Gharabaghi, Martin Bogdan

2013

Abstract

Cortical stimulation is being investigated as a possible tool to support stroke rehabilitation. In particular the analysis of stimulation-evoked neural activity during the rehabilitation process might be helpful to gain a better understanding of the brain reorganization associated with functional recovery after stroke. In this paper, the stimulation-evoked brain activity from a patient with implanted epidural electrodes undergoing an intervention using of brain-computer interfaces combined with cortical stimulation for stroke rehabilitation has been analyzed. We identified a component of the evoked cortical activity that exhibited several characteristics that have not been described before: A significant latency decrease over the course of the rehabilitation training, a significantly smaller latency if the patient attempted to move his paralyzed hand compared to rest and a significant correlation of the latency with the spectral power of the ECoG signal. In addition to the latency, other parameters such as the peak amplitude of the evoked activity were tested as well, but showed a smaller effect size. We hypothesize that such “dynamic” components of the evoked activity that appear to be correlated with the rehabilitation process and the ongoing brain signal could be a target for future closed-loop stimulation systems.

References

  1. Bergmann, T. O., Mölle, M., Schmidt, M. A., Lindner, C., Marshall, L., Born, J., and Siebner, H. R. (2012). EEG-Guided Transcranial Magnetic Stimulation Reveals Rapid Shifts in Motor Cortical Excitability during the Human Sleep Slow Oscillation. Journal of Neuroscience, 32(1):243-253.
  2. Brugger, D., Butovas, S., Bogdan, M., and Schwarz, C. (2011). Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials. IEEE transactions on bio-medical engineering, 58(5):1483-91.
  3. Casarotto, S., Romero Lauro, L. J., Bellina, V., Casali, A. G., Rosanova, M., Pigorini, A., Defendi, S., Mariotti, M., and Massimini, M. (2010). EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time. PloS one, 5(4):e10281.
  4. Fadiga, L., Buccino, G., Craighero, L., Fogassi, L., Gallese, V., and Pavesi, G. (1999). Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia, 37(2):147-58.
  5. Ferreri, F., Pasqualetti, P., Määttä, S., Ponzo, D., Ferrarelli, F., Tononi, G., Mervaala, E., Miniussi, C., and Rossini, P. (2011). Human brain connectivity during single and paired pulse transcranial magnetic stimulation. NeuroImage, 54(1):90-102.
  6. Hummel, F. and Cohen, L. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? The Lancet Neurology, 5(8):708-712.
  7. Liepert, J., Bauder, H., Miltner, W., Taub, E., and Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31(6):1210-1216.
  8. Lioumis, P., Kicic, D., Savolainen, P., Mäkelä, J. P., and Kähkönen, S. (2009). Reproducibility of TMSEvoked EEG responses. Human brain mapping, 30(4):1387-96.
  9. Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744):2228-32.
  10. Matsumoto, R., Nair, D. R., LaPresto, E., Najm, I., Bingaman, W., Shibasaki, H., and L üders, H. O. (2004). Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain, 127(Pt 10):2316-30.
  11. Mitchell, K., Baker, M. R., and Baker, S. N. (2007). Muscle responses to transcranial stimulation in man depend on background oscillatory activity. Journal of Physiology, 583(Pt 2):567-579.
  12. Morishima, Y., Akaishi, R., Yamada, Y., Okuda, J., Toma, K., and Sakai, K. (2009). Task-specific signal transmission from prefrontal cortex in visual selective attention. Nature Neuroscience, 12(1):85-91.
  13. Nikulin, V. V., Kicic, D., Kähkönen, S., and Ilmoniemi, R. J. (2003). Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. The European Journal of Neuroscience, 18(5):1206-12.
  14. Pfurtscheller, G. and Lopes da Silva, F. H. (1999). Eventrelated EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11):1842-57.
  15. Plow, E. B., Carey, J. R., Nudo, R. J., and Pascual-Leone, A. (2009). Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke, 40(5):1926-31.
  16. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, O., Brasil, F. L., Liberati, G., Curado, M. R., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L. G., and Birbaumer, N. (2013). Brain-machine-interface in chronic stroke rehabilitation: A controlled study. Annals of neurology, (Accepted).
  17. Schulz, H., Ubelacker, T., Keil, J., Müller, N., and Weisz, N. (2013). Now I am Ready-Now I am not: The Influence of Pre-TMS Oscillations and Corticomuscular Coherence on Motor-Evoked Potentials. Cerebral cortex.
  18. Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., and Koyama, S. (1991). Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochirurgica Supplement, 52:137-139.
  19. van Elswijk, G., Maij, F., Schoffelen, J.-M., Overeem, S., Stegeman, D. F., and Fries, P. (2010). Corticospinal beta-band synchronization entails rhythmic gain modulation. Journal of Neuroscience, 30(12):4481-4488.
  20. Walter, A., Bensch, M., Brugger, D., Rosenstiel, W., Bogdan, M., Birbaumer, N., and Gharabaghi, A. (2009). BCCI - a bidirectional cortical communication interface. In Proceedings of the International Joint Conference on Computational Intelligence, pages 440-445.
  21. Walter, A., Murguialday, A. R., Spüler, M., Naros, G., Lea˜o, M. T., Gharabaghi, A., Rosenstiel, W., Birbaumer, N., and Bogdan, M. (2012). Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects. Frontiers in Neural Circuits, 6:87.
  22. Wassermann, E., Epstein, C., and Ziemann, U. (2008). Oxford Handbook of Transcranial Stimulation (Oxford Handbooks). Oxford University Press, USA.
  23. Woody, C. D. (1967). Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Medical & Biological Engineering, 5(6):539- 554.
  24. df 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3
Download


Paper Citation


in Harvard Style

Walter A., Naros G., Spüler M., Rosenstiel W., Gharabaghi A. and Bogdan M. (2013). Dynamics of a Stimulation-evoked ECoG Potential During Stroke Rehabilitation - A Case Study . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: BrainRehab, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 241-248. DOI: 10.5220/0004644302410248


in Bibtex Style

@conference{brainrehab13,
author={Armin Walter and Georgios Naros and Martin Spüler and Wolfgang Rosenstiel and Alireza Gharabaghi and Martin Bogdan},
title={Dynamics of a Stimulation-evoked ECoG Potential During Stroke Rehabilitation - A Case Study},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: BrainRehab, (NEUROTECHNIX 2013)},
year={2013},
pages={241-248},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004644302410248},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: BrainRehab, (NEUROTECHNIX 2013)
TI - Dynamics of a Stimulation-evoked ECoG Potential During Stroke Rehabilitation - A Case Study
SN - 978-989-8565-80-8
AU - Walter A.
AU - Naros G.
AU - Spüler M.
AU - Rosenstiel W.
AU - Gharabaghi A.
AU - Bogdan M.
PY - 2013
SP - 241
EP - 248
DO - 10.5220/0004644302410248