Two-player Ad hoc Output-feedback Cumulant Game Control

Chukwuemeka Aduba, Chang-Hee Won

2015

Abstract

This paper studies a finite horizon output-feedback game control problem where two players seek to optimize their system performance by shaping the distribution of their cost function through cost cumulants. We consider a two-player second cumulant nonzero-sum Nash game for a partially-observed linear system with quadratic cost function. We derive the near-optimal players strategy for the second cost cumulant function by solving the Hamilton-Jacobi-Bellman (HJB) equation. The results of the proposed approach are demonstrated by solving a numerical example.

References

  1. Aberkane, S., Ponsart, J. C., Rodrigues, M., and Sauter, D. (2008). Output feedback control of a class of stochastic hybrid systems. Automatica, 44:1325-1332.
  2. Basar, T. (1999). Nash Equilibria of Risk-Sensitive Nonlinear Stochastic Differential Games. Journal of Optimization Theory and Applications, 100(3):479-498.
  3. Bensoussan, A. and Schuppen, J. H. V. (1985). Optimal Control of Partially Observable Stochastic Systems with an Exponential-of-Integral Performance Index. SIAM Journal of Control and Optimization, 23(4):599-613.
  4. Charilas, D. E. and Panagopoulos, A. D. (2010). A survey on game theory applications in wireless networks. Computer Networks, 54(18):3421-3430.
  5. Chen, T., Lewis, F. L., and Abu-Khalaf, M. (2007). A Neural Network Solution for Fixed-Final Time Optimal Control of Nonlinear Systems. Automatica, 43(3):482-490.
  6. Chen, Z. and Jagannathan, S. (2008). Generalized Hamilton-Jacobi-Bellman Formulation-Based Neural Network Control of Affine Nonlinear Discrete-Time Systems. IEEE Transactions on Neural Networks, 19(1):90-106.
  7. Cruz, J. B., Simaan, M. A., Gacic, A., and Liu, Y. (2002). Moving Horizon Nash Strategies for a Military Air Operation. IEEE Transactions on Aerospace and Electronic Systems, 38(3):989-999.
  8. Davis, M. (1977). Linear Estimation and Stochastic Control. Chapman and Hall, London, UK.
  9. Finlayson, B. A. (1972). The Method of Weighted Residuals and Variational Principles. Academic Press, New York, NY.
  10. Fleming, W. H. and Rishel, R. W. (1975). Deterministic and Stochastic Optimal Control. Springer-Verlag, New York, NY.
  11. Geromel, J. C., de Souza, C. C., and Skelton, R. E. (1998). Static Output Feedback Controllers: Stability and Convexity. IEEE Transactions on Automatic Control, 43(1):120-125.
  12. Kailath, T. (1968). An Innovations Approach to Least Square Estimation Part I: Linear Filtering in Additive White Noise. IEEE Transactions on Automatic Control, 13(6):646-655.
  13. Klompstra, M. B. (2000). Nash equilibria in risk-sensitive dynamic games. IEEE Transactions on Automatic Control, 45(7):1397-1401.
  14. Mukaidani, H., Xu, H., and Dragon, V. (2010). Static Output Feedback Strategy of Stochastic Nash Games for Weakly-Coupled Large-Scale Systems. In Proc. of the American Control Conference, pages 361-366, Baltimore, MD.
  15. Sain, M. K. (1966). Control of Linear Systems According to the Minimal Variance Criterion-A New Approach to the Disturbance Problem. IEEE Transactions on Automatic Control, AC-11(1):118-122.
  16. Sain, M. K. and Liberty, S. R. (1971). Performance Measure Densities for a Class of LQG Control Systems. IEEE Transactions on Automatic Control, AC-16(5):431- 439.
  17. Sain, M. K., Won, C.-H., Spencer, Jr., B. F., and Liberty, S. R. (2000). Cumulants and risk-sensitive control: A cost mean and variance theory with application to seismic protection of structures. In Filar, J., Gaitsgory, V., and Mizukami, K., editors, Advances in Dynamic Games and Applications, volume 5 of Annals of the International Society of Dynamic Games, pages 427- 459. Birkhuser Boston.
  18. Sandberg, I. W. (1998). Notes on Uniform Approximation of Time-Varying Systems on Finite Time Intervals. IEEE Transactions on Circuit and Systems-1:Fundamental Theory and Applications, AC-45(8):863-865.
  19. Smith, P. J. (1995). A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice Versa. The American Statistician, (49):217-219.
  20. Van De Water, H. and Willems, J. C. (1981). The Certainty Equivalence Property in Stochastic Control Theory. IEEE Transactions on Automatic Control, AC-26(5):1080-1087.
  21. Won, C.-H., Diersing, R. W., and Kang, B. (2010). Statistical Control of Control-Affine Nonlinear Systems with Nonquadratic Cost Function: HJB and Verification Theorems. Automatica, 46(10):1636-1645.
  22. Wonham, W. M. (1968). On the Seperation Theorem of Stochastic Control. SIAM Journal of Control, 6(2):312-326.
  23. Zheng, D. (1989). Some New Results on Optimal and Suboptimal Regulators of the LQ Problem with Output Feedback. IEEE Transactions on Automatic Control, 34(5):557-560.
  24. Zhu, Q., Han, Z., and Basar, T. (2012). A differential game approach to distributed demand side management in smart grid. In IEEE International Conference on Communications (ICC), pages 3345-3350.
Download


Paper Citation


in Harvard Style

Aduba C. and Won C. (2015). Two-player Ad hoc Output-feedback Cumulant Game Control . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 53-59. DOI: 10.5220/0005503300530059


in Bibtex Style

@conference{icinco15,
author={Chukwuemeka Aduba and Chang-Hee Won},
title={Two-player Ad hoc Output-feedback Cumulant Game Control},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={53-59},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005503300530059},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Two-player Ad hoc Output-feedback Cumulant Game Control
SN - 978-989-758-122-9
AU - Aduba C.
AU - Won C.
PY - 2015
SP - 53
EP - 59
DO - 10.5220/0005503300530059