On Routine Evolution of New Replicating Structures in Cellular Automata

Michal Bidlo

2015

Abstract

This paper presents evolutionary design of two-dimensional, uniform cellular automata. The problem of replicating loops is considered as a case study. Conditionally matching rules are used as a technique that is suitable to the design of cellular automata state transition rules. A genetic algorithm is applied to the design of cellular automata that satisfy the requirements of replicating loops. It is shown that such evolution is able to find various state transition rules that support replication of a given loop. Results presented herein demonstrate the ability of derived cellular automata to perform replication not only from an initial instance of the loop but also, that from a seed the loop can autonomously grow.

References

  1. Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2004). Winning Ways for Your Mathematical Plays, 2nd Ed., Volume 4. A K Peters/CRC Press.
  2. Bidlo, M. (2014). Evolving multiplication as emergent behavior in cellular automata using conditionally matching rules. In 2014 IEEE Congress on Evolutionary Computation, pages 2001-2008. IEEE Computational Intelligence Society.
  3. Bidlo, M. and Vasicek, Z. (2013). Evolution of cellular automata with conditionally matching rules. In 2013 IEEE Congress on Evolutionary Computation (CEC 2013), pages 1178-1185. IEEE Computer Society.
  4. Byl, J. (1989). Self-reproduction in small cellular automata. Physica D: Nonlinear Phenomena, 34(1-2):295-299.
  5. Elmenreich, W. and Fehérvári, I. (2011). Evolving selforganizing cellular automata based on neural network genotypes. In Proceedings of the 5th International Conference on Self-organizing Systems, pages 16-25. Springer.
  6. Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence through Simulated Evolution. Wiley, New York.
  7. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
  8. Langton, C. G. (1984). Self-reproduction in cellular automata. Physica D: Nonlinear Phenomena, 10(1- 2):135-144.
  9. Mitchell, M., Hraber, P. T., and Crutchfield, J. P. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7(2):89- 130.
  10. Packard, N. H. (1988). Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems, pages 293-301. World Scientific.
  11. Perrier, J.-Y., Sipper, M., and Zahnd, J. (1996). Toward a viable, self-reproducing universal computer. Physica D, 97:335-352.
  12. Reggia, J. A., Armentrout, S. L., Chou, H.-H., and Peng, Y. (1993). Simple systems that exhibit self-directed replication. Science, 259(5099):1282-1287.
  13. Sapin, E., Adamatzky, A., Collet, P., and Bull, L. (2010). Stochastic automated search methods in cellular automata: the discovery of tens of thousands of glider guns. Natural Computing, 9(3):513-543.
  14. Sapin, E. and Bull, L. (2008). Searching for glider guns in cellular automata: Exploring evolutionary and other techniques. In Monmarch, N., Talbi, E.-G., Collet, P., Schoenauer, M., and Lutton, E., editors, Artificial Evolution, volume 4926 of Lecture Notes in Computer Science, pages 255-265. Springer Berlin Heidelberg.
  15. Sipper, M. (1995). Quasi-uniform computation-universal cellular cutomata. In Advances in Artificial Life, ECAL 1995, Lecture Notes in Computer Science, Vol. 929, pages 544-554. Springer Berlin Heidelberg.
  16. Sipper, M. (1997). Evolution of Parallel Cellular Machines - The Cellular Programming Approach, Lecture Notes in Computer Science, Vol. 1194. Springer, Berlin.
  17. Sipper, M., Goeke, M., Mange, D., Stauffer, A., Sanchez, E., and Tomassini, M. (1997). The firefly machine: online evolware. In Evolutionary Computation, 1997., IEEE International Conference on, pages 181-186.
  18. Stefano, G. D. and Navarra, A. (2012). Scintillae: How to approach computing systems by means of cellular automata. In Cellular Automata for Research and Industry, Lecture Notes in Computer Science, Vol. 7495, pages 534-543. Springer.
  19. Tempesti, G. (1995). A new self-reproducing cellular automaton capable of construction and computation. In Advances in Artificial Life, Proc. 3rd European Conference on Artificial Life , Lecture Notes in Artificial Intelligence, Vol. 929, pages 555-563. Springer.
  20. von Neumann, J. (1966). The Theory of Self-Reproducing Automata. A. W. Burks (ed.), University of Illinois Press.
  21. Yunès, J.-B. (2010). Achieving universal computations on one-dimensional cellular automata. In Cellular Automata for Research and Industry, Lecture Notes in Computer Science Volume 6350, pages 660-669. Springer.
Download


Paper Citation


in Harvard Style

Bidlo M. (2015). On Routine Evolution of New Replicating Structures in Cellular Automata . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA, ISBN 978-989-758-157-1, pages 28-38. DOI: 10.5220/0005585000280038


in Bibtex Style

@conference{ecta15,
author={Michal Bidlo},
title={On Routine Evolution of New Replicating Structures in Cellular Automata},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,},
year={2015},
pages={28-38},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005585000280038},
isbn={978-989-758-157-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,
TI - On Routine Evolution of New Replicating Structures in Cellular Automata
SN - 978-989-758-157-1
AU - Bidlo M.
PY - 2015
SP - 28
EP - 38
DO - 10.5220/0005585000280038