Si elegans: A Computational Model of C. elegans Muscle Response to Light

Alicia Costalago Meruelo, Pedro Machado, Kofi Appiah, T. Martin McGinnity

2015

Abstract

It has long been the goal of computational neuroscientists to understand animal nervous systems, but their vast complexity has made it very difficult to fully understand even basic functions such as movement. The C. elegans nematode offers the opportunity to study a fully described connectome and link neural network to behaviour. In this paper a model of the responses of the body wall muscle in C. elegans to a random light stimulus is presented. An algorithm has been developed that tracks synapses in the nematode nervous system from the stimulus in the phototaxis sensory neurons to the muscles cells. A linear second order model was used to calculate the isometric force in each of the C. elegans body wall muscle cells. The isometric force calculated resembles that of previous investigations in muscle modelling.

References

  1. Altun, Z.F., Hall, D.H., 2009a. Introduction [WWW Document]. WormAtlas. URL www.wormatlas.org (accessed 9.2.15).
  2. Altun, Z.F., Hall, D.H., 2009b. Muscle System, somatic muscle [WWW Document]. WormAtlas. URL www.wormatlas.org (accessed 9.2.15).
  3. Bargmann, C.I., Horvitz, H.R., 1991. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742.
  4. Bobet, J., Gossen, E.R., Stein, R.B., 2005. A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 444-451.
  5. Bobet, J., Stein, R.B., Oguztoreli, M.N., 1993. A Linear Time-Varying Model of Force Generation in SkeletalMuscle. IEEE Trans. Biomed. Eng. 40, 1000-1006.
  6. Boyle, J.H., Berri, S., Cohen, N., 2012. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front. Comput. Neurosci. 6.
  7. Boyle, J.H., Cohen, N., 2007. The role of body wall muscles in C. elegans locomotion. In: BioSystems. p. 363.
  8. Boyle, J.H., Cohen, N., 2008. Caenorhabditis elegans body wall muscles are simple actuators. BioSystems 94, 170- 181.
  9. Brenner, S., 1973. The genetics of behaviour. Br. Med. Bull. 29, 269-271.
  10. Bryden, J., Cohen, N., 2008. Neural control of Caenorhabditis elegans forward locomotion: The role of sensory feedback. Biol. Cybern. 98, 339-351.
  11. Bryden, J.A., 2004. A simulation model of the locomotion controllers for the nematode Caenorhabditis elegans.
  12. Cangelosi, A., 1997. A neural network model of caenorhabditis elegans: the circuit of touch sensitivity. Neural Process. Lett. 6, 91-98.
  13. Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., Brenner, S., 1985. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956-964.
  14. Chen, B.L., Hall, D.H., Chklovskii, D.B., 2006. Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. U. S. A. 103, 4723-4728.
  15. Dunn, N.A., Lockery, S.R., Pierce-Shimomura, J.T., Conery, J.S., 2004. A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans. J. Comput. Neurosci. 17, 137-147.
  16. Gjorgjieva, J., Biron, D., Haspel, G., 2014. Neurobiology of caenorhabditis elegans locomotion: Where do we stand? Bioscience 64, 476-486.
  17. Hedgecock, E.M., Russell, R.L., 1975. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 72, 4061-4065.
  18. Hresko, M.C., Williams, B.D., Waterston, R.H., 1994. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J. Cell Biol. 124, 491-506.
  19. Hunt, K.J., Munih, M., Donaldson, N., Barr, F.M.D., 1998. Investigation of Hammertein Hypothesis in the Modelling of Electrically Stimulated Muscle. IEEE Trans. Biomed. Enginering 45.
  20. Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569-72.
  21. Lin, C.H., Rankin, C.H., 2010. Nematode learning and memory: neuroethology, Encyclopedia of Animal Behavior. Elsevier.
  22. Lockery, S.R., Goodman, M.B., 2009. The quest for action potentials in C. elegans neurons hits a plateau. Nat. Neurosci. 12, 377-8.
  23. Machado, P., Wade, J.J., Appiah, K., McGinnity, T.M., 2015. Si elegans: Hardware Architecture and Communications Protocol. In: The 2015 International Joint Conference on Neural Networks. IEEE, pp. 3473-3479.
  24. Morse, T.M., Lockery, S.R., Ferree, T.C., 1998. Robust Spatial Navigation in a Robot Inspired by Chemotaxis in Caenorhabditis elegans. Adapt. Behav. 6, 393-410.
  25. Rankin, C.H., 2002. From gene to identified neuron to behaviour in Caenorhabditis elegans. Nat. Rev. Genet. 3, 622-30.
  26. Suzuki, M., Tsuji, T., Ohtake, H., 2005. A model of motor control of the nematode C. elegans with neuronal circuits. Artif. Intell. Med. 35, 75-86.
  27. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., Chklovskii, D.B., 2011. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066.
  28. Ward, A., Liu, J., Feng, Z., Xu, X.Z.S., 2008. Lightsensitive neurons and channels mediate phototaxis in C. elegans. Nat. Neurosci. 11, 916-922.
  29. White, J.G., Southgate, E., Thomson, J.N., Brenner, S., 1986. The Mind of a Worm. Philos. Trans. R. Soc. B Biol. Sci. 314, 1-340.
  30. Wilson, E., Rustighi, E., Newland, P.L., Mace, B.R., 2012. A comparison of models of the isometric force of locust skeletal muscle in response to pulse train inputs. Biomech. Model. Mechanobiol. 11, 519-532.
  31. Windmaier, E., Raff, H., Strang, K., 2003. Human Physiology: The Mechanisms of Body Functions. The McGraw-Hill Companies.
  32. Wood, W.B., 1988. Introduction to C. elegans Biology. The Nematode Caenorhabditis elegans 1-16.
Download


Paper Citation


in Harvard Style

Costalago Meruelo A., Machado P., Appiah K. and McGinnity T. (2015). Si elegans: A Computational Model of C. elegans Muscle Response to Light . In Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015) ISBN 978-989-758-161-8, pages 121-126. DOI: 10.5220/0005712201210126


in Bibtex Style

@conference{nebica15,
author={Alicia Costalago Meruelo and Pedro Machado and Kofi Appiah and T. Martin McGinnity},
title={Si elegans: A Computational Model of C. elegans Muscle Response to Light},
booktitle={Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015)},
year={2015},
pages={121-126},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005712201210126},
isbn={978-989-758-161-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015)
TI - Si elegans: A Computational Model of C. elegans Muscle Response to Light
SN - 978-989-758-161-8
AU - Costalago Meruelo A.
AU - Machado P.
AU - Appiah K.
AU - McGinnity T.
PY - 2015
SP - 121
EP - 126
DO - 10.5220/0005712201210126