Comparison between Channel Hopping and Channel Adaptation for Industrial Wireless Sensor Networks

Ruan D. Gomes, Marcelo S. Alencar, Diego V. Queiroz, Iguatemi E. Fonseca, Cesar Benavente-Peces

2017

Abstract

One of the differences between the new standard IEEE 802.15.4e, in comparison to the previous IEEE 802.15.4 standard, is the use of multiple channels. The Time-Slotted Channel Hopping (TSCH) mode employs channel hopping, and the Deterministic and Synchronous Multi-channel Extension (DSME) mode employs channel hopping or channel adaptation, during the contention free periods. When using the channel adaptation as the channel diversity technique, a pair of nodes communicate using the same channel while the channel quality is good enough in terms of signal-to-noise ratio. Thus, it is necessary to evaluate the quality of the links, in order to proper use this mechanism. In this paper, three different approaches, based on the DSME protocol, were implemented and evaluated through a simulation study. The first one (CH-DSME) is based on a simple channel hopping mechanism, the second one (CA-DSME) employs channel adaptation, and the third one is a novel hybrid approach (H-DSME), that uses both channel hopping and channel adaptation. The H-DSME outperformed the other two approaches for the scenario in consideration, which shows that the use of channel adaptation is better than channel hopping for the transmission of unicast packets, when the quality of the links are monitored continuously. However, for packets transmitted in broadcast by the coordinator, the use of channel hopping is a good alternative to deal with the spatial variation in the quality of the channels.

References

  1. (2012). Ieee standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (lr-wpans) amendment 1: Mac sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), pages 1-225.
  2. Agrawal, P., Ahlen, A., Olofsson, T., and Gidlund, M. (2014a). Characterization of long term channel variations in industrial wireless sensor networks. In IEEE International Conference on Communications, pages 1-6.
  3. Agrawal, P., Ahlén, A., Olofsson, T., and Gidlund, M. (2014b). Long term channel characterization for energy efficient transmission in industrial environments. IEEE Trans. on Communications, 62(8):3004-3014.
  4. Alderisi, G., Patti, G., Mirabella, O., and Bello, L. L. (2015). Simulative assessments of the ieee 802.15.4e dsme and tsch in realistic process automation scenarios. In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pages 948-955.
  5. Amzucu, D. M., Li, H., and Fledderus, E. (2014). Indoor radio propagation and interference in 2.4 ghz wireless sensor networks: Measurements and analysis. Wireless Personal Communications, 76:245-269.
  6. Anastasi, G., Conti, M., Francesco, M. D., and Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537 - 568.
  7. Capone, S., Brama, R., Ricciato, F., Boggia, G., and Malvasi, A. (2014). Modeling and simulation of energy efficient enhancements for ieee 802.15.4e dsme. In 2014 Wireless Telecommunications Symposium, pages 1-6.
  8. Du, P. and Roussos, G. (2011). Adaptive channel hopping for wireless sensor networks. In Mobile and Wireless Networking (iCOST), 2011 International Conference on Selected Topics in, pages 19-23.
  9. Du, P. and Roussos, G. (2013). Spectrum-aware wireless sensor networks. In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 2321-2325.
  10. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., and Levis, P. (2009). Collection tree protocol. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys 7809, pages 1-14, New York, NY, USA. ACM.
  11. Gomes, R. D., Alencar, M. S., Queiroz, D. V., and Fonseca, I. E. (2016). Evaluation of link quality estimators for industrial wireless sensor networks. In XXXIV Simpósio Brasileiro de Telecomunicac¸o˜es e Processamento de Sinais, pages 1-5.
  12. Gomes, R. D., Fonseca, I. E., and Alencar, M. S. (2015a). Protocolos multicanais para redes de sensores sem fio industriais (in portuguese). Revista de Tecnologia da Informac¸a˜o e Comunicac¸a˜o, 5(2):25-32.
  13. Gomes, R. D., Queiroz, D. V., Fonseca, I. E., and Alencar, M. S. (2015b). Modelo para simulac¸a˜o realista de redes de sensores sem fio industriais (in portuguese). In XXXIII Simpósio Brasileiro de Telecomunicac¸o˜es, pages 1-5.
  14. Gomes, R. D., Rocha, G. B., Filho, A. C., Fonseca, I. E., and Alencar, M. S. (2014). Distributed approach for channel quality estimation using dedicated nodes in industrial wsn. In Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014 IEEE 25th Annual International Symposium on, pages 1943-1948.
  15. Guglielmo, D. D., Brienza, S., and Anastasi, G. (2016). {IEEE} 802.15.4e: A survey. Computer Communications, 88:1 - 24.
  16. Grsu, M., Vilgelm, M., Zoppi, S., and Kellerer, W. (2016). Reliable co-existence of 802.15.4e tsch-based wsn and wi-fi in an aircraft cabin. In 2016 IEEE International Conference on Communications Workshops (ICC), pages 663-668.
  17. Jeong, W.-C. and Lee, J. (2012). Performance evaluation of ieee 802.15.4e dsme mac protocol for wireless sensor networks. In Enabling Technologies for Smartphone and Internet of Things (ETSIoT), 2012 First IEEE Workshop on, pages 7-12.
  18. Juc, I., Alphand, O., Guizzetti, R., Favre, M., and Duda, A. (2016). Energy consumption and performance of ieee 802.15.4e tsch and dsme. In 2016 IEEE Wireless Communications and Networking Conference, pages 1-7.
  19. Lee, J. and Jeong, W. C. (2012). Performance analysis of ieee 802.15.4e dsme mac protocol under wlan interference. In 2012 International Conference on ICT Convergence (ICTC), pages 741-746.
  20. Lima-Filho, A., Gomes, R., Adissi, M., Borges da Silva, T., Belo, F., and Spohn, M. (2012). Embedded system integrated into a wireless sensor network for online dynamic torque and efficiency monitoring in induction motors. IEEE/ASME Trans. on Mechatronics, 17(3):404-414.
  21. Olofsson, T., Ahln, A., and Gidlund, M. (2016). Modeling of the fading statistics of wireless sensor network channels in industrial environments. IEEE Trans. on Signal Processing, 64(12):3021-3034.
  22. Patti, G., Alderisi, G., and Bello, L. L. (2014). Introducing multi-level communication in the ieee 802.15.4e protocol: The multichannel-lldn. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pages 1-8.
  23. Patti, G. and Bello, L. L. (2016). A priority-aware multichannel adaptive framework for the ieee 802.15.4elldn. IEEE Transactions on Industrial Electronics, PP(99):1-1.
  24. Petersen, S. and Carlsen, S. (2009). Performance evaluation of wirelesshart for factory automation. In IEEE Conference on Emerging Technologies & Factory Automation, pages 1-9.
  25. Tanghe, E., Joseph, W., Verloock, L., Martens, L., Capoen, H., Herwegen, K. V., and Vantomme, W. (2008). The industrial indoor channel: Large-scale and temporal fading at 900, 2400, and 5200 mhz. IEEE Trans. on Wireless Communications, 7:2740-2751.
  26. Watteyne, T., Lanzisera, S., Mehta, A., and Pister, K. S. J. (2010). Mitigating multipath fading through channel hopping in wireless sensor networks. In 2010 IEEE International Conference on Communications, pages 1-5.
Download


Paper Citation


in Harvard Style

D. Gomes R., S. Alencar M., V. Queiroz D., E. Fonseca I. and Benavente-Peces C. (2017). Comparison between Channel Hopping and Channel Adaptation for Industrial Wireless Sensor Networks . In Proceedings of the 6th International Conference on Sensor Networks - Volume 1: SENSORNETS, ISBN 978-989-758-211-0, pages 87-98. DOI: 10.5220/0006206800870098


in Bibtex Style

@conference{sensornets17,
author={Ruan D. Gomes and Marcelo S. Alencar and Diego V. Queiroz and Iguatemi E. Fonseca and Cesar Benavente-Peces},
title={Comparison between Channel Hopping and Channel Adaptation for Industrial Wireless Sensor Networks},
booktitle={Proceedings of the 6th International Conference on Sensor Networks - Volume 1: SENSORNETS,},
year={2017},
pages={87-98},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006206800870098},
isbn={978-989-758-211-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Sensor Networks - Volume 1: SENSORNETS,
TI - Comparison between Channel Hopping and Channel Adaptation for Industrial Wireless Sensor Networks
SN - 978-989-758-211-0
AU - D. Gomes R.
AU - S. Alencar M.
AU - V. Queiroz D.
AU - E. Fonseca I.
AU - Benavente-Peces C.
PY - 2017
SP - 87
EP - 98
DO - 10.5220/0006206800870098