A Taxonomy and Systematic Approach for Automotive System Architectures - From Functional Chains to Functional Networks

Johannes Bach, Stefan Otten, Eric Sax

2017

Abstract

Technological advances enable realization of increasingly complex customer features in the automotive sector. Traffic jam pilot or predictive energy management depict examples of recently introduced features that span across different conventional vehicle domains. The increased interconnectivity and functional complexity impose new requirements on the automotive systems engineering practice. The resulting challenge is to develop integrated approaches that combine the established procedures with innovative techniques. To address this challenge, we present a comprehensive taxonomy for existing automotive features. Based on this characterization, established industrial and new research approaches for logical system architectures are consolidated. We introduce levels of hierarchy in the logical system architecture to facilitate systems engineering of innovative functions and highly distributed features. The systematic approach provides a novel rationale for the evolution from functional chains to functional networks in the automotive industry.

References

  1. Adler, N., Hillenbrand, M., Müller-Glaser, K. D., Metzker, E., and Reichmann, C. (2012). Graphically notated fault modeling and safety analysis in the context of electric and electronic architecture development and functional safety. In 2012 23rd IEEE International Symposium on Rapid System Prototyping (RSP), pages 36-42.
  2. Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat, Y., Homm, F., Huber, W., and Kaempchen, N. (2015). Experience, results and lessons learned from automated driving on germany's highways. IEEE Intelligent Transportation Systems Magazine, 7(1):42-57.
  3. ATESST2 Consortium (2013). EAST-ADL Domain Model Specification , 2.1.12 edition.
  4. Automotive-SIG (2015). Automotive SPICE Process Assessment / Reference Model. VDA QMC, Berlin, Germany, 3.0 edition.
  5. AUTOSAR development cooperation (2015). Specification of RTE. Munich, 4.2.1 edition.
  6. Baldessari, R., Bödekker, B., Brakemeier, A., Deegener, M., Festag, A., Franz, W., Hiller, A., Kellum, C., Kosch, T., Kovacs, A., Lenardi, M., Lübke, A., Menig, C., Peichl, T., Roeckl, M., Dieter, S., Markus, S., Stratil, H., Vögel, H.-J., Weyl, B., and Zhang, W. (2007). CAR 2 CAR Communication Consortium Manifesto. CAR 2 CAR Communication Consortium, Brussels, 1.1 edition.
  7. Bauer, E., Lotz, F., Pfromm, M., Schreier, M., Cieler, S., Eckert, A., Hohm, A., Lüke, S., Rieth, P., Abendroth, B., Willert, V., Adamy, J., Bruder, R., Konigorski, U., and Winner, H. (2012). Proreta 3: An integrated approach to collision avoidance and vehicle automation. at - Automatisierungstechnik, 60:755-765.
  8. Bauer, K.-L. and Gauterin, F. (2016). A two-layer approach for predictive optimal cruise control. In SAE Technical Paper 2016-01-0634.
  9. Becker, J., Aranda Colas, M., Nordbruch, S., and Fausten, Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., and Winner, H. (2014). Three decades of driver assistance systems. IEEE Intelligent Transportation Systems Magazine, 6(4):6-22.
  10. Bhave, A., Krogh, B. H., Garlan, D., and Schmerl, B. (2011). View consistency in architectures for cyber-physical systems. In Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM International Conference on, pages 151-160.
  11. Bogenrieder, R., Fehring, M., and Bachmann, R. (2009). Pre-safe in rear-end collision situations. In Proceedings 21st International Technical Conferrence on the Enhanced Safety of Vehicles, Stuttgart.
  12. Broy, M., Gleirscher, M., Kluge, P., Krenzer, W., Merenda, S., and Wild, D. (2009). Automotive architecture framework: Towards holistic and standardised system architecture description. Technical report, Technische Universität München.
  13. Buechel, M., Frtunikj, J., Becker, K., Sommer, S., Buckl, C., Armbruster, M., Marek, A., Zirkler, A., Klein, C., and Knoll, A. (2015). An automated electric vehicle prototype showing new trends in automotive architectures. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pages 1274-1279.
  14. Cramer, S., Lange, A., and Bengler, K. (2015). Path planning and steering control concept for a cooperative lane change maneuver according to the h-mode concept. In 7. Tagung Fahrerassistenzsysteme.
  15. Flemisch, F. O., Bengler, K., Bubb, H., Winner, H., and Bruder, R. (2014). Towards cooperative guidance and control of highly automated vehicles: H-mode and conduct-by-wire. Ergonomics, 57(3):343-360. PMID: 24559139.
  16. Fuerst, S. (2015). Autosar the next generation - the adaptive platform. In CARS Critical Automotive applications: Robustness & Safety in 11th EDCC European Dependable Computing Conference.
  17. Haas, W. and Langjahr, P. (2016). Cross-domain vehicle control units in modern e/e architectures. In 16. Internationales Stuttgarter Symposium, pages 1619-1627.
  18. Holder, S., Hoerwick, M., and Gentner, H. (2012). Funktionsbergreifende szeneninterpretation zur vernetzung von fahrerassistenzsystemen. In AAET - Automatisiertes und vernetztes Fahren.
  19. Ishida, S. and Gayko, J. E. (2004). Development, evaluation and introduction of a lane keeping assistance system. In Intelligent Vehicles Symposium, 2004 IEEE, pages 943-944.
  20. Kim, J.-W., Lee, K.-J., and Ahn, H.-S. (2015). Development of software component architecture for motor-driven power steering control system using autosar methodology. In Control, Automation and Systems (ICCAS), 2015 15th International Conference on, pages 1995- 1998.
  21. Korsiakoff, A., Sweet, W. N., Seymour, S. J., and Biemer, S. M. (2011). Systems Engineering Principles and Practice. John Wiley & Sons, Inc.
  22. Leen, G. and Heffernan, D. (2002). Expanding automotive electronic systems. Computer, 35(1):88-93.
  23. Liebemann, E. K., Meder, K., Schuh, J., and Nenninger, G. (2004). Safety and performance enhancement: The bosch electronic stability control (esp). SAE Paper, 20004:21-0060.
  24. Matthaei, R. and Maurer, M. (2015). Autonomous driving - a top-down-approach. at - Automatisierungstechnik, 63(3):155-167.
  25. Moon, S., Yi, K., and Moon, I. (2008). Design, tuning and evaluation of integrated acc/ca systems. In 17th World Congress of the International Federation of Automatic Control (IFAC 2008), volume 41 of IFAC Proceedings Volumes, pages 8546-8551.
  26. Naranjo, J. E., Gonzalez, C., Garcia, R., de Pedro, T., and Haber, R. E. (2005). Power-steering control architecture for automatic driving. IEEE Transactions on Intelligent Transportation Systems, 6(4):406-415.
  27. Navale, V. M., Williams, K., Lagospiris, A., Schaffert, M., and Schweiker, M.-A. (2015). (r)evolution of e/e architectures. SAE Int. J. Passeng. Cars Electron. Electr. Syst., 8(2):282-288.
  28. Nilsson, J., Brännstr öm, M., Coelingh, E., and Fredriksson, J. (2016). Lane change maneuvers for automated vehicles. IEEE Transactions on Intelligent Transportation Systems, PP(99):1-10.
  29. Nordbruch, S., Quast, G., Nicodemus, R., and Scheiger, R. (2015). Automated valet parking. In 7. Tagung Fahrerassistenzsysteme.
  30. Pohl, K., Hoenninger, H., Achatz, R., , and Broy, M. (2012). Model-Based Engineering of Embedded Systems - The SPES 2020 Methodology. Springer-Verlag Berlin Heidelberg.
  31. Pretschner, A., Broy, M., Krueger, I. H., and Stauner, T. (2007). Software engineering for automotive systems: A roadmap. In FOSE Future of Software Engineering.
  32. Reinhardt, D. and Kucera, M. (2013). Domain controlled architecture - a new approach for large scale software integrated automotive systems. In 3rd International Conference on Pervasive Embedded Computing and Communication Systems, pages 221-226.
  33. SAE international (2016). Taxonomy and definitions for terms related to driving automation systems for onroad motor vehicles.
  34. Schäuffele, J. and Zurawka, T. (2012). Automotive Software Engineering - Grundlagen, Prozesse, Methoden und Werzeuge effizient einsetzen . Springer Fachmedien Wiesbaden GmbH, 5 edition.
  35. Stiller, C., Färber, G., and Kammel, S. (2007). Cooperative cognitive automobiles. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, pages 215-220.
  36. Stolz, W., Kornhaas, R., and Sommer, T. (2010). Domain control units the solution for future e/e architectures? In SAE Technical Paper 2010-01-0686, pages 221-226.
  37. Streichert, T. and Traub, M. (2012). Elektrik/ElektronikArchitekturen im Kraftfahrzeug - Modellierung und Bewertung von Echtzeitsystemen. Springer Berlin Heidelberg.
  38. Tas, O. S., Kuhnt, F., Zöllner, J. M., and Stiller, C. (2016). Functional system architectures towards fully automated driving. In 2016 IEEE Intelligent Vehicles Symposium (IV).
  39. Tseng, H. E., Ashrafi, B., Madau, D., Brown, T. A., and Recker, D. (1999). The development of vehicle stability control at ford. IEEE/ASME Transactions on Mechatronics, 4(3):223-234.
  40. Vector Informatik GmbH (2016). PREEvision User Manual Version 8.0. Stuttgart.
  41. Wahl, H.-G. (2015). Optimale Regelung eines prädiktiven Energiemanagements von Hybridfahrzeugen. PhD thesis, Karlsruher Institut fr Technologie.
  42. Weber, J. (2009). Springer-Verlag.
  43. Weber, M. and Weisbrod, J. (2002). Requirements engineering in automotive development - experience and challenges. In IEEE Joint International Conference on Requirements Engineering (RE'02).
  44. Winner, H., Danner, B., and Steinle, J. (2012). Handbuch Fahrerassistenzsysteme, chapter Adaptive Cruise Control, pages 478-521. Vieweg+Teubner Verlag, Wiesbaden.
  45. Woestman, J., Patil, P., Stunz, R., and Pilutti, T. (2002). Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management. US Patent 6,487,477.
  46. Zhan, R. and Krishnan, A. (2011). Using delta model for collaborative work of industrial large-scaled e/e architecture models. Model Driven Engineering Languages and Systems, 14th International Conference, MODELS 2011, pages 16-21.
Download


Paper Citation


in Harvard Style

Bach J., Otten S. and Sax E. (2017). A Taxonomy and Systematic Approach for Automotive System Architectures - From Functional Chains to Functional Networks . In Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, ISBN 978-989-758-242-4, pages 90-101. DOI: 10.5220/0006307600900101


in Bibtex Style

@conference{vehits17,
author={Johannes Bach and Stefan Otten and Eric Sax},
title={A Taxonomy and Systematic Approach for Automotive System Architectures - From Functional Chains to Functional Networks},
booktitle={Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},
year={2017},
pages={90-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006307600900101},
isbn={978-989-758-242-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,
TI - A Taxonomy and Systematic Approach for Automotive System Architectures - From Functional Chains to Functional Networks
SN - 978-989-758-242-4
AU - Bach J.
AU - Otten S.
AU - Sax E.
PY - 2017
SP - 90
EP - 101
DO - 10.5220/0006307600900101