Chen, S., Billing, S. A. and Grant, P. M. (1990) Non-linear
system identifcation using neural networks.
International Journal of Control, 51(6), pp. 1191-1214.
Cybenko, G. (1989) Approximation by superposition of a
sigmoidal function. Mathematics of Control Signals
and Systems 2, pp. 303–314..
Dong, D. and Mcavoy, T. J. (1994) Nonlinear principal
component analysis - based on principal curves and
neural networks. Proceedings of the 1994 American
Control Conference, Vols 1-3, pp. 1284-1288.
Ge, Z. Q., Gao, F. R. and Song, Z. H. (2011) Mixture
probabilistic PCR model for soft sensing of multimode
processes. Chemometrics and Intelligent Laboratory
Systems, 105(1), pp. 91-105.
Ge, Z. Q., Huang, B. and Song, Z. H. (2014) Nonlinear
semisupervised principal component regression for soft
sensor modeling and its mixture form. Journal of
Chemometrics, 28(11), pp. 793-804.
Geladi, P. and Kowalski, B. R. (1986) Partial least-squares
regression - a tutorial. Analytica Chimica Acta, 185, pp.
1-17.
Gonzaga, J. C. B., Meleiro, L. A. C., Kiang, C. and Maciel,
R. (2009) ANN-based soft-sensor for real-time process
monitoring and control of an industrial polymerization
process. Computers & Chemical Engineering, 33(1),
pp. 43-49.
Hartnett, M. K., Lightbody, G. and Irwin, G. W. (1998)
Dynamic inferential estimation using principal
components regression (PCR). Chemometrics and
Intelligent Laboratory Systems, 40(2), pp. 215-224.
Jolliffe, I. T. (2002) Principal Component Analysis,
Springer series in statistics, 2nd ed., New York:
Springer.
Kadlec, P., Gabrys, B. and Strandt, S. (2009) Data-driven
Soft Sensors in the process industry. Computers &
Chemical Engineering, 33(4),pp. 795-814.
Qin, S. J. (1997) Neural Networks for Intelligent Sensors
and Control — Practical Issues and Some Solutions. in
Neural Systems for Control, San Diego: Academic
Press,. pp. 213-234.
Shang, C., Huang, B., Yang, F. and Huang, D. X. (2015a)
Probabilistic slow feature analysis-based representation
learning from massive process data for soft sensor
modeling. AIChE Journal, 61(12), pp. 4126-4139.
Shang, C., Huang, B., Yang, F. and Huang, D. X. (2016)
Slow feature analysis for monitoring and diagnosis of
control performance. Journal of Process Control, 39,
pp. 21-34.
Shang, C., Yang, F., Gao, X. Q. and Huang, D. X. (2015b)
Extracting latent dynamics from process data for
quality prediction and performance assessment via slow
feature regression. 2015 American Control Conference,
pp. 912-917.
Shang, C., Yang, F., Gao, X. Q., Huang, X. L., Suykens, J.
A. K. and Huang, D. X. (2015c) Concurrent monitoring
of operating condition deviations and process dynamics
anomalies with slow feature analysis. AIChE Journal,
61(11), pp. 3666-3682.
Tham, M. T., Montague, G. A., Morris, A. J. and Lant, P.
A. (1991) Soft-sensors for process estimation and
inferential control. Journal of Process Control, 1(1),
pp. 3-14.
Willis, M. J., Di Massimo, C., Montague, G. A., Tham, M.
T. and Morris, A. J. (1991) Inferential measurement via
artificial neural networks. Intelligent Tuning and
Adaptive Control, 15-17, pp. 85-90.
Wiskott, L. and Sejnowski, T. J. (2002) Slow feature
analysis: Unsupervised learning of invariances. Neural
Computation, 14(4), pp. 715-770.
Yang, J., Zeng, X. Q., Zhong, S. M. and Wu, S. L. (2013)
Effective neural network ensemble approach for
improving generalization performance. IEEE
Transactions on Neural Networks and Learning
Systems, 24(6), pp. 878-887.
Zhang, J. (1999) Developing robust non-linear models
through bootstrap aggregated neural networks.
Neurocomputing, 25, pp. 93-113.
Zhang, J., Jin, Q. B. and Xu, Y. M. (2006) Inferential
estimation of polymer melt index using sequentially
trained bootstrap aggregated neural networks.
Chemical Engineering & Technology, 29(4), pp. 442-
448.
Zhang, J., Martin, E. B., Morris, A. J. and Kiparissides, C.
(1997) Inferential estimation of polymer quality using
stacked neural networks. Computers & Chemical
Engineering, 21, pp. S1025-S1030.