In Proceedings of Arabic Language Technology Inter-
national Conference (ALTIC).
Abouenour, L. (2011). On the improvement of passage re-
trieval in arabic question/answering (q/a) systems. In
Mu
˜
noz, R., Montoyo, A., and M
´
etais, E., editors, Nat-
ural Language Processing and Information Systems,
pages 336–341, Berlin, Heidelberg. Springer Berlin
Heidelberg.
Abouenour, L., Bouzoubaa, K., and Rosso, P. (2012).
Idraaq: New arabic question answering system based
on query expansion and passage retrieval. volume
1178.
Aouichat, A. and Guessoum, A. (2017). Building talaa-
afaq, a corpus of arabic factoid question-answers for
a question answering system. In Frasincar, F., Ittoo,
A., Nguyen, L. M., and M
´
etais, E., editors, Natural
Language Processing and Information Systems, pages
380–386, Cham. Springer International Publishing.
Belalem, G., Abbache, A., Barigou, F., and Belkredim, F. Z.
(2014). The use of arabic wordnet in arabic informa-
tion retrieval. Int. J. Inf. Retr. Res., 4(3):54–65.
Benajiba, Y., Rosso, P., and Lyhyaoui, A. (2007). Imple-
mentation of the arabiqa question answering system’s
components.
Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of the Association for Computa-
tional Linguistics, 5:135–146.
Clark, C. and Gardner, M. (2018). Simple and effective
multi-paragraph reading comprehension. In ACL.
Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., and Hu, G.
(2017). Attention-over-attention neural networks for
reading comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 593–602.
Association for Computational Linguistics.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P.,
Liu, N. F., Peters, M., Schmitz, M., and Zettlemoyer,
L. S. (2017). Allennlp: A deep semantic natural lan-
guage processing platform.
Hammo, B., Abu-Salem, H., Lytinen, S., and Evens, M.
(2002). Qarab: A: Question answering system to
support the arabic language. In Proceedings of the
ACL-02 Workshop on Computational Approaches to
Semitic Languages.
Lee, K., Yoon, K., Park, S., and Hwang, S.-w. (2018). Semi-
supervised training data generation for multilingual
question answering. In Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC-2018).
Liu, R., Hu, J., Wei, W., Yang, Z., and Nyberg, E. (2017).
Structural embedding of syntactic trees for machine
comprehension. In EMNLP.
Nabil, M., Abdelmegied, A., Ayman, Y., Fathy, A., Khairy,
G., Yousri, M., El-Makky, N. M., and Nagi, K. (2017).
Alquans - an arabic language question answering sys-
tem. In KDIR.
Pasha, A., Elbadrashiny, M., Diab, M., Elkholy, A., Eskan-
dar, R., Habash, N., Pooleery, M., Rambow, O., and
Roth, R. (2014). Madamira: A fast, comprehensive
tool for morphological analysis and disambiguation of
arabic. Proceedings of the 9th International Confer-
ence on Language Resources and Evaluation, pages
1094–1101.
Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
Squad: 100,000+ questions for machine comprehen-
sion of text. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2383–2392. Association for Computational
Linguistics.
Romeo, S., Martino, G. D. S., Belinkov, Y., Barr
´
on-Cede
˜
no,
A., Eldesouki, M., Darwish, K., Mubarak, H., Glass,
J. R., and Moschitti, A. (2017). Language processing
and learning models for community question answer-
ing in arabic.
Seo, M. J., Kembhavi, A., Farhadi, A., and Hajishirzi, H.
(2016). Bidirectional attention flow for machine com-
prehension. CoRR, abs/1611.01603.
Trigui, O., Belguith, L. H., and Rosso, P. (2010). Defara-
bicqa: Arabic definition question answering system.
Wang, W., Yan, M., and Wu, C. (2018). Multi-granularity
hierarchical attention fusion networks for reading
comprehension and question answering. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1705–1714. Association for Computa-
tional Linguistics.
Wang, W., Yang, N., Wei, F., Chang, B., and Zhou, M.
(2017). Gated self-matching networks for reading
comprehension and question answering. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 189–198. Association for Computational Lin-
guistics.
Xiong, C., Zhong, V., and Socher, R. (2016). Dynamic
coattention networks for question answering. CoRR,
abs/1611.01604.
KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval
288