Frey  B.J.,  Dueck  D.  (2007).  Clustering by Passing 
Messages between Data Points.  In  Science, vol. 315, 
issue 5814. JSTOR, pp. 972-976. 
Gansukh  C.,  Yoo  K.H,  Bazarbaev  M.,  Nasridinov  A. 
(2021). Feasibility Study of Outlier Detection in Smart 
Manufacturing Applications. In Advances in Intelligent 
Information Hiding and Multimedia Signal Processing: 
Proceeding of the 16th International Conference on 
IIHMSP in conjunction with the 13th international 
conference on FITAT,  vol.2,  November  5-7,  2020, 
Vietnam.  Springer, pp.283-290. 
Gopali  Saroj,  Namin  A.S.  (2022).  Deep  Learning-Based 
Time-Series  Analysis  for  Detecting  Anomalies  in 
Internet of Things. In Electronics, vol. 11,  MDPI,  pp. 
1-16 . 
Gutschi  C.,  Furian  N.,  Suschnigg  J.,  Neubacher  D, 
Voessner S. (2018). Log-based predictive maintenance 
in  discrete  parts  manufacturing.  In Procedia CIRP, 
vol.79. ELSEVIER, pp. 528-533. 
Hunaidi O., Chu W.T., (1999),  Acoustical characteristics 
of  leak  signals  in  plastic  water  distribution  pipes.  In 
Applied Acoustics, vol. 58.  ELSEVIER, pp. 235-254 
Kammoun M., Kammoun A., Abid M. (2022). Experiments 
based  comparative  evaluations  of  machine  learning 
techniques  for  leak  detection  in  water  distribution 
systems.  In  Water Supply, vol.22, Issue 1. IWA 
PUBLISHING, pp. 628–642. 
Kammoun  M.,  Kammoun  A.,  Abid  M.  
(2022).  LSTM-AE-WLDL:  Unsupervised  LSTM 
Auto-Encoders  for Leak  Detection  and Location 
in Water  Distribution  Networks.  In  Water Resources 
Management, vol.37, Issue 2. Springer, pp.731-746. 
Klise K., A., Murray, R., Haxton, T. (2018). An Overview 
of the Water Network Tool for Resilience (WNTR). 
Leu  S.S.,  Bui  Q.N.  (2016).  Leak  Prediction  Model  for 
Water Distribution Networks Created Using a Bayesian 
Network  Learning  Approach.  In  Water Resources 
Management, vol. 30. Springer, pp.2719-2733. 
Lijuan  W.,  Hongwei  Z.,  Zhiguang  N.  (2012).  Leakage 
Prediction  Model  Based  on RBF  Neural  Network.  In 
Software Engineering and Knowledge Engineering: 
Theory and Practice, vol 114. Springer, pp 451-458.  
F.T.,  Ting  K.M.,  Zhou  Z.H.  (2008).  Isolation  Forest.  In 
2008 Eighth IEEE International Conference on Data 
Mining. IEEE Computer Society, pp. 413-422 
Liu  F.T.,  Ting  K.M.,  Zhou  Z.H.  (2012).  Isolation-Based 
Anomaly  Detection.  In  ACM Transactions on 
Knowledge Discovery from Data (TKDD),  vol.6, Issue 
1, No. 3. ACM, pp.1-39. 
Naiades Project. A holistic water ecosystem for digitization 
of  urban  water  sector.  Available  online:  https:// 
www.naiades-project.eu/  (Accessed  on  20  January 
2023). 
Otte  T.,  Posada-Moreno  A.F.,  Hubenthal  F.,  Habler  M., 
Bartels H., Abdelrazeq A., Hees F. (2022). Condition 
Monitoring  of  Rail  Infrastructure  and  Rolling  Stock 
using  Acceleration  Sensor  Data  of  on-Rail  Freight 
Wagons.  In  Proceedings of the 11th International 
Conference on Pattern Recognition Applications and 
Methods (ICPRAM 2022). SCITEPRESS, pp.432-439. 
 Pearson, D. (2019). Standard Definition for Water Losses, 
IWA Publishing, London. 
Perez  R.,  Sanz  G.,  Puig  V.,  Quevedo  J.,  Escofet  M..C., 
Nejjari  F.,  Meseguer  J.,  Cembrano  G.,  Tur,  J.M.M., 
Sarrate  R.  (2014).  Leak  Localization  in  Water 
Networks  A  Model-Based  Methodology  Using 
Pressure Sensors Applied to a Real Network in 
Barcelona. In IEEE Control Systems Magazine, vol.34, 
issue 4. Applications of Control, pp.24-36. 
Philips S.J. (2002). Acceleration of K-Means and Related 
Clustering Algorithms. In  Algorithm Engineering and 
Experiments,  4th International Workshop, ALENEX 
2002,  San  Francisco,  CA,  USA,  January  4-5,  2002, 
Springer, pp.166-177. 
Scikit-learn, Scikit-learn:machine learning in Python, 1.2.2. 
Available  online:  scikit-learn:  machine  learning  in 
Python — scikit-learn 1.2.2 documentation (Accessed 
on 3 April 2023). 
Rosner  B.,  (1983).  Percentage  Points  for  a  Generalized 
ESD  Many  Outlier  Procedure.  In  Technometrics, 
vol.25, No. 2. ASQ, pp.165-172. 
Shukla S.,  Naganna S. (2014). A Review on K-Means Data 
Clustering  Approach.  In  International Journal of 
Information & Computation Technology, vol.4, No.17, 
Springer, pp.1847-1860 
Tornyeviadzi H.S., Seidu R. (2023). Leakage detection in 
water  distribution  networks  via  1D  CNN  deep 
autoencoder  for  multivariate  SCADA  data.  In 
Engineering Applications of Artificial Intelligence, 
vol.122. ELSEVIER. 
Vrachimis G.S., Kyriakou M.S., Eliades D.G.,Polycarpou 
M.  M.,  (2018).  LeakDB:  A  benchmark  dataset  for 
leakage diagnosis in water distribution networks. In  1
st
  
International WDSA / CCWI 2018 Joint Conference. 
Wan  X.,  Kuhanestani  P.K.,  Farmani  R.,  Keedwell  E. 
(2022). Literature Review  of Data Analytics for Leak 
Detection in Water Distribution Networks: A Focus on 
Pressure and Flow Smart Sensors. In Journal of Water 
Resources Planning and Management, vol.148, issue 
10, ASCE. 
Wang L. Liu Y.,  Yin  H.,  Sun  W.  (2022).  Fault diagnosis 
and predictive maintenance for hydraulic system based 
on digital twin model. In AIP Advances, vol. 12.  AIP 
Publishing.  
Wang W., Sun H., Guo J., Lao L., Wu S., Zhang J. (2021). 
Experimental  study  on  water  pipeline  leak  using  In-
Pipe  acoustic  signal  analysis  and  artificial  neural 
network  prediction.  In  Measurement, vol.186. 
ELSEVIER. 
Xu  D.,  Tian  Y.  (2015).  A  Comprehensive  Survey  of 
Clustering  Algorithms.  In  Annals of Data Science, 
vol.2, No. 2. Springer, pp.165-193. 
Yu T., Chen X., Yan W., Xu Z., Ye M. (2023). Leak 
detection  in  water distribution  systems  by classifying 
vibration  signals.  In  Mechanical Systems and Signal 
Processing, vol. 185. ELSEVIER.