NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN

Jean-Baptiste Thevenet, Dominikus Noll, Pierre Apkarian

Abstract

The purpose of this paper is to examine a nonlinear spectral semidefinite programming method to solve problems with bilinear matrix inequality (BMI) constraints. Such optimization programs arise frequently in automatic control and are difficult to solve due to the inherent non-convexity. The method we discuss here is of augmented Lagrangian type and uses a succession of unconstrained subproblems to approximate the BMI optimization program. These tangent programs are solved by a trust region strategy. The method is tested against several difficult examples in feedback control synthesis.

References

  1. Anderson, B. and Vongpanitlerd, S. (1973). Network analysis and synthesis: a modern systems theory approach. Prentice-Hall.
  2. Apkarian, P., Noll, D., Thevenet, J. B., and Tuan, H. D. (2003a). A Spectral Quadratic-SDP Method with Applications to Fixed-Order H2 and H8 Synthesis. submitted. Rapport Interne , MIP, UMR 5640, Maths. Dept. - Paul Sabatier University.
  3. Apkarian, P., Noll, D., and Tuan, H. D. (2002). Fixedorder H8 control design via an augmented Lagrangian method . Rapport Interne 02-13, MIP, UMR 5640, Maths. Dept. - Paul Sabatier University . http://mip.ups-tlse.fr/publi/publi.html.
  4. Apkarian, P., Noll, D., and Tuan, H. D. (2003b). Fixedorder H8 control design via an augmented Lagrangian method . Int. J. Robust and Nonlinear Control, 13(12):1137-1148.
  5. Ben-Tal, A. and Zibulevsky, M. (1997). Penalty/barrier multiplier methods for convex programming problems. SIAM J. on Optimization, 7:347-366.
  6. Bertsekas, D. P. (1982.). Constrained optimization and Lagrange multiplier methods. Academic Press, London.
  7. Chen, B. M. (1998). H8 Control and Its Applications, volume 235 of Lectures Notes in Control and Information Sciences. Springer Verlag, New York, Heidelberg, Berlin.
  8. Conn, A. R., Gould, N., and Toint, P. L. (1991). A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal., 28(2):545 - 572.
  9. Conn, A. R., Gould, N. I. M., Sartenaer, A., and Toint, P. L. (1993a). Global Convergence of two Augmented Lagrangian Algorithms for Optimization with a Combination of General Equality and Linear Constraints. Technical Report TR/PA/93/26, CERFACS, Toulouse, France.
  10. Conn, A. R., Gould, N. I. M., Sartenaer, A., and Toint, P. L. (1993b). Local convergence properties of two augmented Lagrangian algorithms for optimization with a combination of general equality and linear constraints. Technical Report TR/PA/93/27, CERFACS, Toulouse, France.
  11. Conn, A. R., Gould, N. I. M., Sartenaer, A., and Toint, P. L. (1996). Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. on Optimization, 6(3):674 - 703.
  12. Fares, B., Apkarian, P., and Noll, D. (2000). An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory. In Proc. American Control Conf., pages 3702-3705, Chicago, Illinois.
  13. Fares, B., Apkarian, P., and Noll, D. (2001). An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory. Int. J. Control, 74(4):348-360.
  14. Fares, B., Noll, D., and Apkarian, P. (2002). Robust Control via Sequential Semidefinite Programming. SIAM J. on Control and Optimization, 40(6):1791-1820.
  15. Gangsaas, D., Bruce, K., Blight, J., and Ly, U.-L. (1986). Application of modern synthesis to aircraft control: Three case studies. IEEE Trans. Aut. Control, AC31(11):995-1014.
  16. Hassibi, A., How, J., and Boyd, S. (1999). A pathfollowing method for solving bmi problems in control. In Proc. American Control Conf., pages 1385-1389.
  17. Henrion, D., M.Kocvara, and Stingl, M. (2003). Solving simultaneous stabilization BMI problems with PENNON. In IFIP Conference on System Modeling and Optimization, volume 7, Sophia Antipolis, France.
  18. Hestenes, M. R. (1969). Multiplier and gradient method. J. Optim. Theory Appl., 4:303 - 320.
  19. Hung, Y. S. and MacFarlane, A. G. J. (1982). Multivariable feedback: A classical approach. Lectures Notes in Control and Information Sciences. Springer Verlag, New York, Heidelberg, Berlin.
  20. Keel, L. H., Bhattacharyya, S. P., and Howze, J. W. (1988). Robust control with structured perturbations. IEEE Trans. Aut. Control, 36:68-77.
  21. Kocvara, M. and Stingl, M. (2003). A Code for Convex Nonlinear and Semidefinite Programming. Optimization Methods and Software, 18(3):317-333.
  22. Leibfritz, F. (1998). Computational design of stabilizing static output feedback controller. Rapports 1 et 2 Mathematik/Informatik, Forschungsbericht 99-02, Universitt Trier.
  23. Lewis, A. (1996). Derivatives of spectral functions. Mathematics of Operations Research, 21:576-588.
  24. Lewis, A. (2001). Twice differentiable spectral functions. SIAM J. on Matrix Analysis and Applications, 23:368- 386.
  25. Lewis, A. and S.Sendov, H. (2002). Quadratic expansions of spectral functions. Linear Algebra and Appl., 340:97-121.
  26. Lin, C. and More, J. (1998). Newton's method for large bound-constrained optimization problems. Technical Report ANL/MCS-P724-0898, Mathematics and Computer Sciences Division, Argonne National Laboratory.
  27. Mosheyev, L. and Zibulevsky, M. (2000). Penalty/barrier multiplier algorithm for semidefinite programming. Optimization Methods and Software, 13(4):235-261.
  28. Noll, D., Torki, M., and Apkarian, P. (2002). Partially Augmented Lagrangian Method for Matrix Inequality Constraints. submitted. Rapport Interne , MIP, UMR 5640, Maths. Dept. - Paul Sabatier University.
  29. Powell, M. J. D. (1969). A method for nonlinear constraints in minimization problem. In Fletcher, R., editor, Optimization. Academic Press, London, New York.
  30. Schnabel, R. B. and Eskow, E. (1999). A revised modified cholesky factorization algorithm. SIAM J. on Optimization, 9(4):1135-1148.
  31. Shapiro, A. (2002). On differentiability of symmetric matrix valued functions. School of Industrial and Systems Engineering, Georgia Institute of Technology. Preprint.
  32. Zibulevsky, M. (1996). Penalty/Barrier Multiplier Methods for Large-Scale Nonlinear and Semidefinite Programming. Ph. D. Thesis, Technion Isral Institute of Technology.
Download


Paper Citation


in Harvard Style

Thevenet J., Noll D. and Apkarian P. (2004). NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-12-0, pages 237-248. DOI: 10.5220/0001128402370248


in Bibtex Style

@conference{icinco04,
author={Jean-Baptiste Thevenet and Dominikus Noll and Pierre Apkarian},
title={NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2004},
pages={237-248},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001128402370248},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN
SN - 972-8865-12-0
AU - Thevenet J.
AU - Noll D.
AU - Apkarian P.
PY - 2004
SP - 237
EP - 248
DO - 10.5220/0001128402370248