A STOCHASTIC OFF LINE PLANNER OF OPTIMAL DYNAMIC MOTIONS FOR ROBOTIC MANIPULATORS

Taha Chettibi, Moussa Haddad, Samir Rebai, Abd Elfetah Hentout

Abstract

We propose a general and simple method that handles free (or point-to-point) motion planning problem for redundant and non-redundant serial robots. The problem consists of linking two points in the operational space, under constraints on joint torques, jerks, accelerations, velocities and positions while minimizing a cost function involving significant physical parameters such as transfer time and joint torque quadratic average. The basic idea is to dissociate the search of optimal transfer time T from that of optimal motion parameters. Inherent constraints are then easily translated to bounds on the value of T. Furthermore, a stochastic optimization method is used which not only may find a better approximation of the global optimal motion than is usually obtained via traditional techniques but that also handles more complicated problems such as those involving discontinuous friction efforts and obstacle avoidance.

References

  1. Angeles J., 1997, Fundamentals of robotic mechanical systems. Theory, methods, and algorithms,” Springer Edition.
  2. Barraquand J., Langlois B., Latomb J. C., 1992, Numerical Potential Field Techniques for robot path planning, IEEE Tr. On Sys., Man, and Cyb., 22(2):224-241.
  3. Barraquand J., Kavraki L., Latombe J. C., Li T. Y., Motwani R., Raghavan P., 1996, A random Sampling Scheme for path planning, 7th Int. conf. on Rob. Research ISRR.
  4. Bobrow J.E., Dubowsky S., Gibson J.S., 1985, TimeOptimal Control of robotic manipulators along specified paths, The Int. Jour. of Rob. Res., 4 (3), pp. 3-16.
  5. Bessonnet G., 1992, Optimisation dynamique des mouvements point à point de robots manipulateurs, Thèse d'état, Université de Poitiers, France.
  6. Betts J. T., 1998, Survey of numerical methods for trajectory optimization, J. Of Guidance, Cont. & Dyn., 21(2), 193-207.
  7. Chen Y., Desrochers A., 1990, A proof of the structure of the minimum time control of robotic manipulators using Hamiltonian formulation, IEEE Trans. On Rob. & Aut. 6(3), pp388-393.
  8. Chettibi T., 2000, Contribution à l'exploitation optimale des bras manipulateurs, Magister thesis, EMP, Algiers, Algeria.
  9. Chettibi T., 2001a, Optimal motion planning of robotic manipulators, Maghrebine Conference of Electric Engineering, Constantine, Algeria.
  10. Chettibi T., Yousnadj A., 2001b, Optimal motion planning of robotic manipulators along specified geometric path, International Conference on productic, Algiers.
  11. Chettibi T., Lehtihet H. E., 2002a, A new approach for point to point optimal motion planning problems of robotic manipulators, 6th Biennial Conf. on Engineering Syst. Design and Analysis (ASME ), Turkey, APM10.
  12. Chettibi T., 2002b, Research of optimal free motions of manipulator robots by non-linear optimization, Séminaire international sur le génie Mécanique, Oran, Algeria.
  13. Danes F., 1998, Critères et contraintes pour la synthèse optimale des mouvements de robots manipulateurs. Application à l'évitement d'obstacles, Thèse d'état, Université de Poitiers.
  14. Dombre E. & Khalil W., 1988, Modélisation et commande des robots, First Edition, Hermes.
  15. Fletcher R., 1987, Practical methods of optimization, Second Edition, Wiley Interscience Publication.
  16. Garber M., Lin. M.C., 2002, Constrained based motion planning for virtual prototyping, SM'02, Germany.
  17. Glass K., Colbaugh R., Lim D., Seradji H., 1995, Real time collision avoidance for redundant manipulators, IEEE Trans. on Rob. & Aut., 11(3), pp 448-457.
  18. Hull D. G., 1997, Conversion of optimal control problems into parameter optimization problems, J. Of Guidance, Cont. & Dyn., 20(1), 57-62.
  19. Jaques J., Soltine E., Yang H. S., 1989, Improving the efficiency of time-optimal path following algorithms, IEEE Trans. on Rob. & Aut., 5 (1).
  20. Kang G. S., McKay D. N., 1986, Selection of near minimum time geometric paths for robotic manipulators, IEEE Trans. on Aut. & Contr., AC31(6), pp. 501-512.
  21. Kavraki L., Latombe J. C., 1994, Randomized Preprocessing of Configuration Space for Fast Path Planning, Proc. Of IEEE Int. Conf. on Rob. & Aut., pp. 2138-2139, San Diego.
  22. Kavraki L., Svesta P., Latombe J. C., Overmars M., 1996, Probabilistic Roadmaps for Path Planning in High Dimensional Configuration space, IEEE trans. Robot. Aut., 12:566-580.
  23. Khatib O., 1986, Real-time Obstacle Avoidance for Manipulators and Mobile Robots, Int. Jour. of Rob. Research, vol. 5(1).
  24. Latombe J. C., 1991, Robot Motion Planning, Kluwer Academic Publishers.
  25. Latombe J. C., 1999, Motion planning: A journey of, molecules, digital actors and other artifacts, Int. Jour. Of Rob. Research, 18(11), pp 1119-1128.
  26. LaValle S. M., 1998, Rapidly exploring random trees: A new tool for path planning, TR98-11, Computer Science Dept., Iowa State University. http://janowiec.cs.iastate.edu/papers/rrt.ps.
  27. LaValle S. M., Kuffner J. J., 1999, Randomized kinodynamic planning, Proc. IEEE Int. Conf. On Rob. & Aut., pp 473-479.
  28. Lazrak M., 1996, Nouvelle approche de commande optimale en temps final libre et construction d'algorithmes de commande de systèmes articulés, Thèse d'état, Université de Poitiers.
  29. Macfarlane S., Croft E. A., 2001, Design of jerk bounded trajectories for on-line industrial robot applications, Proceeding of IEEE Int. Conf. on rob. & Aut. pp 979- 984.
  30. Martin B. J., Bobrow J. E., 1997, Minimum effort motions for open chain manipulators with task dependent endeffector constraints, Proc. IEEE Int. Conf. Rob. & Aut. Albuquerque, New Mexico, pp 2044-2049.
  31. Martin B. J., Bobrow J. E., 1999, Minimum effort motions for open chain manipulators with task dependent endeffector constraints, Int. Jour. Rob. of Research, 18(2), pp.213-224.
  32. Mao Z. , Hsia T. C., 1997, Obstacle avoidance inverse kinematics solution of redundant robots by neural networks, Robotica, 15, 3-10.
  33. Mayorga R. V., 1995, A framework for the path planning of robot manipulators, IASTED third Int. Conf. on Rob. and Manufacturing, pp 61-66.
  34. Mitsi S., Bouzakis K. D., Mansour G., 1995, Optimization of robot links motion in inverse kinematics solution considering collision avoidance and joints limits, Mach. & Mec. Theory,30 (5), pp 653-663.
  35. Ola D., 1994, Path-Constrained robot control with limited torques. Experimental evaluation, IEEE Trans. On Rob. & Aut., 10(5), pp 658-668.
  36. Overmars M. H., 1992, A random Approach to motion planning, Technical report RUU-CS-92-32, Utrecht University.
  37. Piazzi A., Visioli A., 1998, Global minimum time trajectory planning of mechanical manipulators using internal analysis, Int. J. Cont., 71(4), 631-652.
  38. Pfeiffer F., Rainer J., 1987, A concept for manipulator trajectory planning, IEEE J. of Rob. & Aut., Ra-3 (3): 115-123.
  39. Powell M. J., 1984, Algorithm for non-linear constraints that use Lagrangian functions, Mathematical programming, 14, 224-248.
  40. Pontryagin L., Boltianski V., Gamkrelidze R., Michtchenko E., 1965, Théorie mathématique des processus optimaux, Edition Mir.
  41. Rana A.S., Zalazala A. M. S., 1996, Near time optimal collision free motion planning of robotic manipulators using an evolutionary algorithm, Robotica, 14, pp 621- 632.
  42. Richard M. J., Dufourn F., Tarasiewicz S., 1993, Commande des robots manipulateurs par la programmation dynamique, Mech. Mach. Theory, 28(3), 301-316.
  43. Rebai S., Bouabdallah A., Chettibi T., 2002, Recherche stochastique des mouvements libres optimaux des bras manipulateurs, Premier congrès international de génie mécanique, Constantine, Algérie.
  44. Tan H. H., Potts R. B., 1988, Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints, IEEE Jour. Of Rob. & Aut. 4(2), 174-185.
  45. Appendix A: Characteristics of the 4R robot.
Download


Paper Citation


in Harvard Style

Chettibi T., Haddad M., Rebai S. and Hentout A. (2004). A STOCHASTIC OFF LINE PLANNER OF OPTIMAL DYNAMIC MOTIONS FOR ROBOTIC MANIPULATORS . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-12-0, pages 121-128. DOI: 10.5220/0001132301210128


in Bibtex Style

@conference{icinco04,
author={Taha Chettibi and Moussa Haddad and Samir Rebai and Abd Elfetah Hentout},
title={A STOCHASTIC OFF LINE PLANNER OF OPTIMAL DYNAMIC MOTIONS FOR ROBOTIC MANIPULATORS},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2004},
pages={121-128},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001132301210128},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A STOCHASTIC OFF LINE PLANNER OF OPTIMAL DYNAMIC MOTIONS FOR ROBOTIC MANIPULATORS
SN - 972-8865-12-0
AU - Chettibi T.
AU - Haddad M.
AU - Rebai S.
AU - Hentout A.
PY - 2004
SP - 121
EP - 128
DO - 10.5220/0001132301210128