ZEROS, OUTPUT-NULLING SUBSPACES AND ZERO DYNAMICS IN MIMO LTI SYSTEMS - Signal Processing, Systems Modelling and Control

Jerzy Tokarzewski, Lech Sokalski

2004

Abstract

In standard MIMO LTI continuous-time systems S(A,B,C) the classical notion of the Smith zeros does not characterize fully the output-zeroing problem nor the zero dynamics. The question how this notion can be extended and related to the state-space methods is discussed. Nothing is assumed about the relationship of the number of inputs to the number of outputs nor about the normal rank of the underlying system matrix. The proposed extension treats zeros (called further the invariant zeros) as the triples (complex number, nonzero state-zero direction, input-zero direction). Such treatment is strictly connected with the output zeroing problem and in that spirit the zeros can be easily interpreted even in the degenerate case (i.e., when any complex number is such zero). A simple sufficient and necessary condition of degeneracy is presented. The condition decomposes the class of all systems S(A,B,C) such that B ≠ 0 and C ≠ 0 into two disjoint subclasses: of nondegenerate and degenerate systems. In nondegenerate systems the Smith zeros and the invariant zeros are exactly the same objects which are determined as the roots of the so-called zero polynomial. The degree of this polynomial equals the dimension of the maximal (A,B)-invariant subspace contained in Ker C, while the zero dynamics are independent upon control vector. In degenerate systems the zero polynomial determines merely the Smith zeros, while the set of the invariant zeros equals the whole complex plane. The dimension of the maximal (A,B)-invariant subspace contained in Ker C is strictly larger than the degree of the zero polynomial, whereas the zero dynamics essentially depend upon control vector.

References

  1. Basile, G., Marro, G., 1992. Controlled and Conditioned Invariants in Linear System Theory, Prentice-Hall, Englewood Cliffs, NJ.
  2. Callier, F.M., Desoer, C.A., 1982. Multivariable Feedback Systems, Springer Verlag, New York.
  3. Chen, C.T., 1984. Linear System Theory and Design, Holt, Rinehart and Winston, New York.
  4. Emami-Naeini, A., Van Dooren, P., 1982. Computation of zeros of linear multivariable systems, Automatica, vol. 18, pp. 415-430.
  5. Gantmacher, F.R., 1988. Theory of Matrices, Nauka, Moscow (in Russian).
  6. Isidori, A., 1995. Nonlinear Control Systems, SpringerVerlag, London.
  7. Kalman, R. E., 1982. On the computation of the reachable/ observable canonical form, SIAM J. Contr. &Optimiz., vol. 20, pp. 258-260.
  8. MacFarlane, A.G.J., Karcanias, N., 1976. Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory, Int. J. Contr., vol. 24, pp. 33-74.
  9. Misra, P., Van Dooren, P., Varga, A., 1994. Computation of structural invariants of generalized state-space systems, Automatica, vol. 30, pp. 1921-1936.
  10. Marro, G., 1996. Multivariable regulation in geometric terms: old and new results, Lecture Notes in Control and Information Sciences, C. Bonivento, G. Marro, R Zanasi, Eds, vol. 215, pp.77-138, Springer, London.
  11. Marro, G., Ntogramatzidis, L., Prattichizzo, D., Zattoni,E., 2002. Linear Control Theory in Geometric Terms, CIRA Summer School „Antonio Ruberti”, Bertinoro, Italy, July 15-20.
  12. Rosenbrock, H. H., 1970. State Space and Multivariable Theory, Nelson, London.
  13. Rosenbrock, H.H., 1973. The zeros of a system, Int. J. Contr., vol. 18, pp. 297-299.
  14. Schrader, C.B., Sain, M.K., 1989. Research on system zeros: A survey, Int. J. Contr., vol. 50, pp. 1407-1433.
  15. Sontag, E.D., 1990. Mathematical Control Theory, Springer-Verlag, New York.
  16. Tokarzewski, J., 2000. A note on dynamical interpretation of invariant zeros in MIMO LTI systems and algebraic criterions of degeneracy, Int. Symp. MTNS, Perpignan, June 19-23 (compact disc).
  17. Tokarzewski, J., 2002a. Zeros in Linear Systems: a Geometric Approach, Publishing House of the Warsaw University of Technology, Warsaw.
  18. Tokarzewski, J., 2002b. Relationship between Smith zeros and invariant zeros in linear singular systems, Proc. of the 8th IEEE Int. Conf. On Methods and Models in Automation and Robotics, Sept. 2-5, Szczecin, Poland, vol. I, pp. 71-74.
  19. Wonham, W.M., 1979. Linear Multivariable Control: a Geometric Approach, Springer-Verlag, New York.
Download


Paper Citation


in Harvard Style

Tokarzewski J. and Sokalski L. (2004). ZEROS, OUTPUT-NULLING SUBSPACES AND ZERO DYNAMICS IN MIMO LTI SYSTEMS - Signal Processing, Systems Modelling and Control . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 972-8865-12-0, pages 114-121. DOI: 10.5220/0001136001140121


in Bibtex Style

@conference{icinco04,
author={Jerzy Tokarzewski and Lech Sokalski},
title={ZEROS, OUTPUT-NULLING SUBSPACES AND ZERO DYNAMICS IN MIMO LTI SYSTEMS - Signal Processing, Systems Modelling and Control},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2004},
pages={114-121},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001136001140121},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - ZEROS, OUTPUT-NULLING SUBSPACES AND ZERO DYNAMICS IN MIMO LTI SYSTEMS - Signal Processing, Systems Modelling and Control
SN - 972-8865-12-0
AU - Tokarzewski J.
AU - Sokalski L.
PY - 2004
SP - 114
EP - 121
DO - 10.5220/0001136001140121