STABILIZING CONTROL FOR HIGHER ORDER SYSTEMS VIA REDUCED ORDER MODEL - A PASSIVITY BASED APPROACH

B. Bandyopadhyay, Prashant Shingare, H. K. Abhyankar

Abstract

In this paper a methodology for design of stabilizing control for high order system via reduced order model is presented. In the first part a method is proposed for the reduction of original higher order passive system to a lower order stable model, using this reduced order model, a strictly passive controller of order equal to that of reduced order model is designed. It is shown that this lower order controller designed from reduced order model when applied to original higher order system results in to close loop stability.

References

  1. R. Sepulchre, M. Jankovic, and P. V. Kokotovic, (1997). Constructive nonlinear control, communication and control engineering. Springer-Verlag London.
  2. E. A. Guillemin, (1957). Synthesis of passive networks New York, NY: Jhon Willey and Sons Inc.
  3. D. Hazony, (1963). Elements of network synthesis. Reinhold Publishing Corporation, Newyork.
  4. B. Peikari, (1974). Fundamentals of network analysis and synthesis. Prentice Hall, Englewood Cliffs, New Jersey.
  5. W. C. Yengst, (1964). Procedures of modern network synthesis. Collier-Macmillan Limited, London.
  6. G. Obinata and B. D. O. Anderson, (2001). Model reduction for control system designSpringer-Verlag London Limited.
  7. S. P. Bhattacharya, H. Chapellat and L. H. Keel,(1995). Robust control: the parametric approach. Upper Saddle River,Prentice-Hall PTR.
  8. B. Bandyopadhyay, Unbehauen and B. M. Patre, (1998). A new algorithm for compensator design for higher order system via reduced model. Automatica Vol. 34, No. 7.
  9. G. Schmitt-Braess, (2003). Feedback of passive systems:synthesis and analysis of linear robust control systems. IEE Proc.-Control Theory Apply., Vol. 150, No. 1.
  10. S. S. Lamba and S. V Rao, (1974). On suboptimal control via the simplified model of the Davison. IEEE Trans. Automat. Control,AC-9, pp 448-450.
  11. M. R. Chidambara and R. B. Sancher, (1974). Low order Generalized Aggrigated Model and Suboptimal Control.IEEE Trans. on Automat. Control., April 1975, pp 175-180.
  12. A. J. van der schaft, (1999), 2-Gain and passivity techniques in nonlinear control, communication and control engineering. Springer-Verlag, Heidelberg, 2nd edition.
  13. R. Lozano-leal and S. M. Joshi, (1988), On the design of dissipative LQG-type controllers, Proceedings of the 27th conference on decision and control, Austin, Texas.
  14. B. Bandyopadhyay and H. Unbehauen, (1999), Interval system reduction using kharitnov polynomials. In European control conference, Karlsruhe, Germany.
  15. Y. Shamash, (1974). Stable reduced order model using pade type approximation. In IEEE Trans. Automatic Control, AC-19, pp. 615-616.
  16. Y. Shamash, (1975). Model Reduction using the Routh Stability Criterion and the Pade Approximation Technique. In Int. J. Control, Vol. 21, No. 3,475-484.
  17. M. F. Hutton and B. Friedland, (1975). Routh approximation for reducing order of linear time invariant system.In IEEE Trans. on Automatic Control, AC-20, pp. 329-337.
  18. John T. Wen, (1988). Time domain and frequency domain conditions for strict positive realness. In IEEE Trans. on Automatic control, Vol. 33, No. 10.
  19. R. Lozano-Leal and S. M. Joshi, (1990). Strictly positive real transfer functions revisited.In IEEE Trans. on Automatic control, Vol. 35, No. 11.
  20. G. Tao and P. A. Ioannou, (1990). Necessary and sufficient conditions for strictly positive real matrices. In IEE Proc. on Control Theory and Apply., Vol. 137, Oct. 1990, pft G. No 5, pp 360-366.
  21. N. K. Sinha and W. Pille, (1971). A new method for reduction of dynamic systems. In Int. J. of Control, Vol. 14, No. 1,111-118.
  22. N. K. Sinha and Kuszta, (1983). Modelling and Identification of Dynamic Systems. New York Van Nostrand Reinhold, Ch. 8 pp 133-164.
  23. A. Lepschy and U. Viaro, (1982). An improvement in the Routh-pade approximation technique. In Int. J. Control, Vol. 36, No. 4,643-661.
  24. M. Vidyasagar, (1983). Nonlinear systems. Prentice Hall, Engle Wood Cliffs, New Jersey.
  25. P. Shingare, B. Bandyopadhyay and H. K. Abhyankar, (2003), Model order reduction technique based on interlacing property and pade approximation. In Proceedings of 27th National Systems Conference, IIT Kharagpur, India, pp 50-54.
  26. P. Shingare and H. K. Abhyankar, (2003). HermiteBiehler Method for System Reduction Preserving Stability. In Proceedings of International Conference on CAD/CAM, Robotics and Autonomous Factories, IIT Delhi, India.
Download


Paper Citation


in Harvard Style

Bandyopadhyay B., Shingare P. and Abhyankar H. (2004). STABILIZING CONTROL FOR HIGHER ORDER SYSTEMS VIA REDUCED ORDER MODEL - A PASSIVITY BASED APPROACH . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 972-8865-12-0, pages 122-129. DOI: 10.5220/0001141201220129


in Bibtex Style

@conference{icinco04,
author={B. Bandyopadhyay and Prashant Shingare and H. K. Abhyankar},
title={STABILIZING CONTROL FOR HIGHER ORDER SYSTEMS VIA REDUCED ORDER MODEL - A PASSIVITY BASED APPROACH},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2004},
pages={122-129},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001141201220129},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - STABILIZING CONTROL FOR HIGHER ORDER SYSTEMS VIA REDUCED ORDER MODEL - A PASSIVITY BASED APPROACH
SN - 972-8865-12-0
AU - Bandyopadhyay B.
AU - Shingare P.
AU - Abhyankar H.
PY - 2004
SP - 122
EP - 129
DO - 10.5220/0001141201220129