A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY

Francesco Amigoni, Vincenzo Caglioti, Umberto Galtarossa

Abstract

The availability of efficient mapping systems to produce accurate representations of initially unknown environments is undoubtedly one of the main requirements for autonomous mobile robots. This paper presents a mapping system that has been implemented on a mobile robot equipped with a laser range scanner. The system builds geometrical maps of the environment employing an exploration strategy that takes into account both the distance travelled and the information gathered to determining the observation positions. This strategy is based on stronger mathematical foundations than the exploration strategies proposed in literature: this is the distinctive feature of our approach and constitutes the main original contribution of this paper.

References

  1. Amigoni, F. and Caglioti, V. (2003). An information-based criterion for ef cient robot map building. In Proceedings of the IEEE International Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems (VECIMS2003), pages 184-189.
  2. Austin, D. and McCarragher, B. (2001). Geometric constraint identi cation and mapping for mobile robots. Robotics and Autonomous Systems, 35(2):59-76.
  3. Burgard, W., Fox, D., Moors, M., Simmons, R., and Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 476-481.
  4. Caglioti, V. (2001). An entropic criterion for minimum uncertainty sensing in recognition and localization - part i: Theoretical and conceptual aspects. IEEE Transaction on Systems, Man, and Cybernetics, 31(2):187- 196.
  5. de Berg, M., Bose, P., Cheong, O., and Morin, P. (2004). On simplifying dot maps. Computational Geometry, 27(1):43-62.
  6. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., and Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transaction on Robotics and Automation, 17(3):229-241.
  7. Dobkin, D. P. and Tal, A. (2001). Ef cient and small representation of line arrangements with applications. In Proceedings of the Symposium on Computational Geometry, pages 293-301.
  8. Gonzáles-BaÃos, H. H. and Latombe, J. C. (2002). Navigation strategies for exploring indoor environments. International Journal of Robotics Research, 21(10- 11):829-848.
  9. Gonzáles-BaÃos, H. H., Mao, E., Latombe, J. C., Murali, T. M., and Efrat, A. (2000). Planning robot motion strategies for ef cient model construction. In Hollerbach, J. and Koditschek, D., editors, Robotics Research - The 9th Int. Symposium, pages 345-352. Springer.
  10. Kwon, Y. D. and S.Lee, J. (1999). A stochastic map building method for mobile robot using 2-d laser range nder. Autonomous Robots, 7(2):187-200.
  11. Lu, F. and Milios, E. (1997). Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems, 18(3):249-275.
  12. Shore, J. E. (1984). On a relation between maximum likelihood classi cation and minimum relative entropy classi cation. IEEE Transactions on Information Theory, 30(6):851-854.
  13. Sim, R. and Dudek, G. (2003). Effective exploration strategies for the construction of visual maps. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3224-3231.
  14. Tarantola, A. (1986). Inverse Problem Theory. Elsevier, Amsterdam, The Netherlands.
  15. Thrun, S. (2001). A probabilistic online mapping algorithm for teams of mobile robots. International Journal of Robotics Research, 20(5):335-363.
  16. Thrun, S. (2002). Robotic mapping: A survey. In Exploring Arti cial Intelligence in the New Millenium, chapter 1. Morgan Kaufmann.
  17. Thrun, S., Burgard, W., and Fox, D. (1998). A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning and Autonomous Robots (joint issue), 31(5):1-25.
  18. Thrun, S., Burgard, W., and Fox, D. (2000). A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 321-328.
Download


Paper Citation


in Harvard Style

Amigoni F., Caglioti V. and Galtarossa U. (2004). A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 972-8865-12-0, pages 71-78. DOI: 10.5220/0001141900710078


in Bibtex Style

@conference{icinco04,
author={Francesco Amigoni and Vincenzo Caglioti and Umberto Galtarossa},
title={A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2004},
pages={71-78},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001141900710078},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY
SN - 972-8865-12-0
AU - Amigoni F.
AU - Caglioti V.
AU - Galtarossa U.
PY - 2004
SP - 71
EP - 78
DO - 10.5220/0001141900710078