A SKELETON BASED METHOD FOR EFFICIENT 3D OBJECT LOCALIZATION - Application to teleoperation

Djamel Merad, Narjes Khezami, Malik Mallem, Samir Otmane

Abstract

Our aim is to develop a vision system for teleoperation to localize an object. This system has to be used through Internet connection. The recognition problem addressed in this paper is to localize a 3D free-form object from a single 2D view of 3D scene. Using a skeletonization process allows to obtain two graphs, the first one representing an object in the scene (2D skeleton) and the second one representing a database object (3D homotopic skeleton). The method encodes geometric and topological information in the form of a skeletal graph and uses graph isomorphism techniques to match the skeletons and find the one-toone correspondences of nodes in order to estimate the object’s pose. Knowing skeleton is a set of lines centred within the 3D/2D objects, our method transforms the problem of free form object localization into points and lines pose estimation. Some experimental results on real images demonstrate the robustness of the proposed method with regard to occlusion, cluster and shadows.

References

  1. Arai H., Takubo T., Hayashibara Y., Tanie K., 2000. Human-Robot Cooperative Manipulation Using a Virtual Nonholonomic Constraint. In Proceedings 2000 IEEE International Conference on Robotics and Automation. 2000.
  2. Attali D., Montanvert A., 1997. Computing & Simplifying 2D& 3D Continuous Skeletons. Computing Vision and Image Understanding, 67(3), pages 261-273, September 1997.
  3. Blum H., 1967. A transformation for extracting new descriptors of shape, in Models for the Perception of Speech and Visual Form (W. Wathen-Dunn, ed.). Cambridge MA: MIT Press, 1967.
  4. Borgefors G., 1996. On Digital Distance Transforms in Three Dimensions. Computer Vision and Image Understanding,64(3):368-376, November 1996.
  5. Camps O. I., Huang C. Y., Kanungo T. 1998. Hierarchical organization of appearance-based parts and relations for object recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages:685- 691, 1998.
  6. Chen J. L., Stockman G. C., 1998. 3D Free-form objet recognition using indexing by contour features. In Computer Vision and Image Understanding, 71(3):334-353, 1998.
  7. Fabbri R., Estozi L.F, Costa L. F., 2002. On Voronoi Diagrams and Medial Axes. Journal of Mathematical Imaging and Vision, 17(1), pages 27-40, July 2002.
  8. Gagvani N., Silver D., 1999. Parameter Controlled Volume Thinning. Graphical Models and Image Procesing, 61(3):149-164, May 1999.
  9. Garey M., Johnson D., 1979. Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
  10. Kégl B., Krzyzak A., 2002. Piecewise linear skeletonization using principal curves. IEEE Transactions on Pattern Analysis and machine Intelligence. 24(1):59-74, 2002.
  11. Lee S. W., Lam L., Suen C., 1993. A systematic evaluation of skeletonization algorithms. In International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no.5,pp. 1203-1255, 1993.
  12. Lu C., Hager G. D., Mjolsness E., 2000. Fast and Globally Convergent Pose Estimation from Video. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (6): 610-622 , 2000.
  13. Macrini D., Shokoufandeh A., Dickinson S., Siddiqi K., Zucker S., 2002a. View-Based 3-D Object Recognition using Shock Graphs. In Proceedings 16 th Internatonal Conference on Pattern Recognition Vol..3, Quebec August 2002.
  14. Macrini D., Shokoufandeh A., Dickinson S., Siddiqi K., Zucker S., 2002b. Spectral Methods for View-Based 3-D Object Recognition using Silhouettes. In Proceedings, Joint IAPR International Workshop on Syntactical and Structural Pattern Recognition, Windsor, ON, August, 2002.
  15. Merad D., Mallem M., Lelandais S., 2004. Skeletonization of Two-Dimensional regions Using Hybrid Method. The 12th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, 2004, Plzen , Czech Republic.
  16. Nilsson F., Danielsson P.E. 1997. Finding the minimal set of maximum disks for binary objects. Graphical Models and Image Processing, 59(1):55-60, January 1997.
  17. Otmane S., Mallem M., 2001. Cooperative remote control using augmented reality system based on the Worl Wide Web. In 1st IFAC Conference on Telematics Application in Automation and Robotics, Weingarten, Germany, July 24-26 2001.
  18. Ottensmeyer M. P., Thompson J. M., Sheridan T. B., 1996. Cooperative Telesurgery: Effects of Time Delay on tool Assignment Decision. In Proceedings of the Human Factors and Ergonomics society 40th Annual Meeting, 1996.
  19. Rosenfeld A., Pfaltz J., 1966. Sequential operations in digital picture processing. J. Assoc. Comput. Mach., 13(4):471-494, 1966.
  20. Saito T., Toriwaki J., 1994. New algorithms for Euclidean Distance Transformation of an n-Dimensional Digitized Picture with Applications. Pattern recognition, 27:1551-1565, 1994.
  21. Siddiqi K., Shokoufandeh A., Dickinson S., and Zucker S., 1999a. Shock graphs and shape matching. In International Journal of Computer Vision, 30:1-24, 1999.
  22. Siddiqi K., Bouix S., Tannenbaum A., Zucker S.W., 1999b. The Hamilton-jacobi skeleton. In ICCV'99, pages 828-834, Kerkyra, Greece, September 1999.
  23. Shokoufandeh A., Dickinson S., 2001. A Unified Framework for Indexing and Matching Hierarchical Shape Structures. In Proceedings, 4th International Workshop on Visual Form, Capri, Italy, May 28-30 2001.
  24. Shokoufandeh A., Dickinson S., Siddiqi K., Zucker S., 1999. Indexing using a spectral encoding of topological structure. In IEEE Conference on Computer Vision and Pattern Recognition,pages 491- 497, Fort Collins, CO, June 1999.
  25. Smith R. W., 1987. Computer processing of line images. A survey, Pattern Recognition, Vol. 20, No. 1, pp. 7-15, 1987.
  26. Tek H., Kimia B.B., 1998. Curve evolution, wave propagation and mathematical morphology. In fourth International Symposium on mathematical Morphology, June 1998.
  27. Worthington P. L., Hancock E. R., 2001. Object Recognition Using Shape-from-Shading. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5): 535-542, 2001.
Download


Paper Citation


in Harvard Style

Merad D., Khezami N., Mallem M. and Otmane S. (2004). A SKELETON BASED METHOD FOR EFFICIENT 3D OBJECT LOCALIZATION - Application to teleoperation . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 972-8865-12-0, pages 95-101. DOI: 10.5220/0001145100950101


in Bibtex Style

@conference{icinco04,
author={Djamel Merad and Narjes Khezami and Malik Mallem and Samir Otmane},
title={A SKELETON BASED METHOD FOR EFFICIENT 3D OBJECT LOCALIZATION - Application to teleoperation},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2004},
pages={95-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001145100950101},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A SKELETON BASED METHOD FOR EFFICIENT 3D OBJECT LOCALIZATION - Application to teleoperation
SN - 972-8865-12-0
AU - Merad D.
AU - Khezami N.
AU - Mallem M.
AU - Otmane S.
PY - 2004
SP - 95
EP - 101
DO - 10.5220/0001145100950101