ON ONTOLOGY MATCHING PROBLEMS - for building a corporate Semantic Web in a multi-communities organization

Bach Thanh Le, Rose Dieng-Kuntz, Fabien Gandon

Abstract

Ontologies are nowadays used in many domains such as Semantic Web, information systems… to represent meaning of data and data sources. In the framework of knowledge management in an heterogeneous organization, the materialization of the organizational memory in a “corporate semantic web” may require to integrate the various ontologies of the different groups of this organization. To be able to build a corporate semantic web in an heterogeneous, multi-communities organization, it is essential to have methods for comparing, aligning, integrating or mapping different ontologies. This paper proposes a new algorithm for matching two ontologies based on all the information available about the given ontologies (e.g. their concepts, relations, information about the structure of each hierarchy of concepts, or of relations), applying TF/IDF scheme (a method widely used in the information retrieval community) and integrating WordNet (an electronic lexical database) in the process of ontology matching.

References

  1. Berners-Lee, T.; Hendler, J.; and Lassila O. 2001. The Semantic Web, Scientific American.
  2. Brickley, D. and Guha, R. 2000. Resource Description Framework Schema Specification 1.0.
  3. Cohen, W. W.; Ravikumar, P.; and Fienberg, S. 2003. A Comparison of String Distance Metrics for NameMatching Tasks. IJCAI 2003, Workshop on Information Integration on the Web.
  4. Dieng, R. and Hug, S. 1998a. Comparison of "Personal Ontologies" Represented through Conceptual Graphs. In: Proc. of the 13th European Conference on Artifical Intelligence (ECAI'98), p. 341-345, Brighton, UK.
  5. Dieng, R. and Hug, S. 1998b. MULTIKAT, a Tool for Comparing Knowledge from Multiple Experts. In Proc. of the 6th Int. Conference on Conceptual Structures (ICCS'98), Springer-Verlag, LNAI 1453.
  6. Doan, A.; Domingos, P.; and Halevy, A. 2001. Reconciling Schemas of Disparate Data Sources: A Machine Learning Approach. In Proc. of the ACM SIGMOD Conf. on Management of Data (SIGMOD2001).
  7. Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A. 2002. Learning to Map between Ontologies on the Semantic Web. The Eleventh International World Wide Web Conference (WWW'2002), Hawaii, USA.
  8. Gandon, F.; Dieng, R.; Corby, O.; and Giboin, A. 2002. Semantic Web and Multi-Agents Approach to Corporate Memory Management. In 17th IFIP World Computer Congress. IIP Track-Intelligent Information Processing, Eds Musen M., Neumann B., Studer R., p. 103-115. August 25-30, 2002, Montreal.
  9. Giunchiglia, F. and Shvaiko P. 2003. Semantic Matching. CEUR-WS, vol: 71.
  10. Lassila, O. and Swick, R.R. 1999. Resource description framework (RDF) Model and Syntax Specification. W3C Recommendation, World Wide Web Consortium, Cambridge (MA), February 1999.
  11. Madhavan, J.; Bernstein, P. A.; and Rahm, E. 2001. Generic Schema Matching with Cupid. In Proc. of the 27th Conference on Very Large Databases.
  12. Mädche, A. and Staab, S. 2002. Measuring Similarity between Ontologies. In Proc. Of the 13th Int. Conference on Knowledge Engineering and Management - EKAW-2002. Madrid, Spain.
  13. Melnik, S.; Garcia-Molina, H.; and Rahm, E. 2001. Similarity Flooding: A Versatile Graph Matching Algorithm. Extended Technical Report, http://dbpubs.stanford.edu/pub/2001- 25.
  14. Melnik, S.; Garcia-Molina, H.; and Rahm, E. 2002. Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching. In Proc. 18th ICDE, San Jose CA.
  15. Miller, G. A. 1995. WordNet: A lexical database for English. Communications of the ACM, 38(11):39--41, 1995.
  16. Noy, N. F. and Musen, M. A. 2001. Anchor-PROMPT: Using Non-Local Context for Semantic Matching. Workshop on Ontologies and Information Sharing. IJCAI, Seattle, WA, . 2001.
  17. Rahm, E. and Bernstein, P. A. 2001. A survey of approaches to automatic schema matching. In The VLDB Journal: Volume 10 Issue, pages 334-350.
  18. Wache, H.; Vogele, T.; Visser, U.; Stuckenschmidt, H.; Schuster, G.; Neumann H.; and Hubner, S. 2001. Ontology-Based Integration of Information - A Survey of Existing Approaches. Proceedings of the IJCAI-01 Workshop: Ontologies and Information Sharing.
  19. EuroWordNet 1999. http://www.illc.uva.nl/EuroWordNet/
Download


Paper Citation


in Harvard Style

Thanh Le B., Dieng-Kuntz R. and Gandon F. (2004). ON ONTOLOGY MATCHING PROBLEMS - for building a corporate Semantic Web in a multi-communities organization . In Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 4: ICEIS, ISBN 972-8865-00-7, pages 236-243. DOI: 10.5220/0002642802360243


in Bibtex Style

@conference{iceis04,
author={Bach Thanh Le and Rose Dieng-Kuntz and Fabien Gandon},
title={ON ONTOLOGY MATCHING PROBLEMS - for building a corporate Semantic Web in a multi-communities organization},
booktitle={Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 4: ICEIS,},
year={2004},
pages={236-243},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002642802360243},
isbn={972-8865-00-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 4: ICEIS,
TI - ON ONTOLOGY MATCHING PROBLEMS - for building a corporate Semantic Web in a multi-communities organization
SN - 972-8865-00-7
AU - Thanh Le B.
AU - Dieng-Kuntz R.
AU - Gandon F.
PY - 2004
SP - 236
EP - 243
DO - 10.5220/0002642802360243