Making Cognitive Summarization Agents Work In A Real-World Domain

Brigitte Endres-Niggemeyer, Elisabeth Wansorra

Abstract

The advantage of cognitively motivated automatic summarizing is that human users can better understand what happens. This improves acceptability. The basic empirical finding in human summarizers is that they combine a choice of intellectual strategies. We report here on SummIt-BMT (Summarize It in Bone Marrow Transplantation), a prototype system that applies a subset of human strategies to a real-world task: fast information supply for physicians in clinical bone marrow transplantation. The human strategies are converted to knowledge-based agents and integrated into a system environment inspired by user-centered information seeking research. A domain ontology provides knowledge shared by human users and system players. Users' query formulation is supported through empirically founded scenarios. Incoming retrieval results are first roughly checked by means of text passage retrieval before the agents apply strategies of competent human summarizers. The presumably relevant text clips are presented with links to their home positions in the source documents. SummIt-BMT has reached the state of a prototype running on a Macintosh server (http://summit-bmt.fh-hannover.de/).

References

  1. Mani, I., Maybury, M. (eds.): Advances in Automated Text Summarization. MIT Press, Cambridge MA (1999)
  2. Hovy, E.: Automated Text Summarization. In: Mitkov, R. (ed.): Oxford University Handbook of Computational Linguistics. Oxford University Press, Oxford (2003) 583-593
  3. Afantenos, S., Karkaletsis, V.: Summarization Techniques and their Application on Medical Documents. AI Med, Spec Issue: Summarization and Information Extraction from Medical Documents (in press)
  4. Lincoln, Y.S., and Guba, E.G.: Naturalistic Inquiry. Sage, Beverly Hills CA (1985)
  5. Endres-Niggemeyer, B.: Summarizing Information. Springer, Berlin (1998)
  6. Kintsch, W., van Dijk, T.A.: Strategies of Discourse Comprehension. Academic Press, Orlando FLA (1983)
  7. Schnotz, W.: Textverstehen als Aufbau mentaler Modelle (Text comprehension as construction of mental models). In: Mandl, H. and Spada H. (eds.): Wissenspsychologie. Psychologie Verlags Union, Muenchen (1988) 299-332
  8. Hobbs, J.R., Stickel, M., Appelt, D., Martin, P.: Interpretation as Abduction. Art Intelligence (1993) 69-142. http://citeseer.nj.nec.com/hobbs90interpretation.html
  9. Endres-Niggemeyer, B., Waumans, W., Yamashita, H.: Modelling Summary Writing by Introspection: A Small-Scale Demonstrative Study. Text 11 (4) (1991) 523-552
  10. Endres-Niggemeyer, B., Neugebauer, E.: Professional Summarizing: No Cognitive Simulation without Observation. Journal of the American Society for Information Science 49 (1998) 486-506
  11. Belkin, N., Oddy, R.N., Brooks, H.M.: ASK for Information Retrieval: Part I. Background and Theory. Journal of Documentation 38(2) (1982) 61-7I
  12. Bates, M.J.: The Design of Browsing and Berrypicking Techniques for the Online Search Interface. Online Rev (1989) 407-424
  13. Marchionini, G.: Information Seeking in Electronic Environments. Cambridge University Press, New York (1995)
  14. Belkin, N.: Helping People Find What They Don't Know. Comm ACM 8 (2000) 58-61
  15. Becher, M., Endres-Niggemeyer, B., Fichtner, G.: Scenario Forms for Web Information Seeking and Summarizing in Bone Marrow Transplantation. Coling-02, Workshop Multilingual Summarization and Question Answering, Taipeh, Taiwan, 31.8. - 1. 9. 2002
  16. Aitchison, J., Gilchrist, A.: Thesaurus Construction and Use: A Practical Manual. 3rd edn. Aslib, London(1997)
  17. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. 11th edn. Aldine Atherton, New York (1980)
  18. McCarthy, J., Buvac, S.: Notes on Formalizing Context. In: IJCAI'93 - 13th Int Joint Conf Artif Intell. Chambery, France (1993) 555-560 http://citeseer.nj.nec.com/318177.html.
  19. Connexor Machinese Syntax. http://www.connexor.com/m_syntax.html
  20. Mitkov, R., Evans, R., Orasan, C.: A New, Fully Automatic Version of Mitkov's Knowledge-Poor Pronoun Resolution Method. 3rd Int Conf Intelligent Text Processing and Comp Linguistics (CICLing-2002), Mexico City, Mexico (2002)
  21. Mann, W. C., Thompson, S.A.: Rhetorical Structure Theory: A Theory of Text Organization. In: Polanyi, L. (ed.): The structure of discourse. Ablex, Norwood N.J. (1987)
Download


Paper Citation


in Harvard Style

Endres-Niggemeyer B. and Wansorra E. (2004). Making Cognitive Summarization Agents Work In A Real-World Domain . In Proceedings of the 1st International Workshop on Natural Language Understanding and Cognitive Science - Volume 1: NLUCS, (ICEIS 2004) ISBN 972-8865-05-8, pages 86-96. DOI: 10.5220/0002662900860096


in Bibtex Style

@conference{nlucs04,
author={Brigitte Endres-Niggemeyer and Elisabeth Wansorra},
title={Making Cognitive Summarization Agents Work In A Real-World Domain},
booktitle={Proceedings of the 1st International Workshop on Natural Language Understanding and Cognitive Science - Volume 1: NLUCS, (ICEIS 2004)},
year={2004},
pages={86-96},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002662900860096},
isbn={972-8865-05-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Workshop on Natural Language Understanding and Cognitive Science - Volume 1: NLUCS, (ICEIS 2004)
TI - Making Cognitive Summarization Agents Work In A Real-World Domain
SN - 972-8865-05-8
AU - Endres-Niggemeyer B.
AU - Wansorra E.
PY - 2004
SP - 86
EP - 96
DO - 10.5220/0002662900860096