Security Analysis of MOR using GL(2, R) ×θ ZZ n

Christian Tobias

Abstract

This paper cryptanalyses the MOR cryptosystem [6] when the group GL(2, R) ×θ ZZ n proposed in [7] is used. We show generic attacks on the system that work with every ring R. For a concrete choice of R even stronger attacks may be possible.

References

  1. I. Anshel, M. Anshel, D. Goldfeld, ”An Algebraic Method for Public-Key Cryptography”, Mathematical Research Letters, 6 (1999), pp. 287-291
  2. S. Blackburn, S. Galbraith, ”Cryptanalysis of two cryptosystems based on group action”, Advances in Cryptology - Asiacrypt 1999, LNCS 1716, pp. 52-61
  3. P. Dehornoy, ”Braid-based cryptography”, Preprint, University of Caen, 2003, http://matin.math.unicaen.fr/~dehornoy/papers.html
  4. T. ElGamal, ”A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Transactions on Information Theory, Volume 31, 1985, pp. 469-472
  5. K. H. Koo, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, ”New PublicKey Cryptosystem Using Braid Groups”, Advances in Cryptology - Crypto 2000, LNCS 1880, pp. 166-183
  6. S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee, C. Park, ”New Public Key Cryptosystem Using Finite Non Abelian Groups”, Advances in Cryptology - Crypto 2001, LNCS 2139, pp. 470-485
  7. S.-H. Paeng, D. Kwon, K.-C. Ha, J. H. Kim, ”Improved public key cryptosystem using finite non abelian groups”, IACR EPrint-Server, Report 2001/066, http://eprint.iacr.org/2001/066
  8. C. Tobias, ”Security Analysis of the MOR Cryptosystem”, 6th International Workshop on Practice and Theory in Public Key Cryptography, PKC 2003, LNCS 2567, pp. 175-186
  9. A. Yamamura, ”Public key cryptosystems using the modular group”, 1st International Public Key Cryptography Conference PKC 1998, LNCS 1431, pp. 203-216
  10. A. Yamamura, ”A functional cryptosystem using a group action”, 4th Australian Information Security and Privacy Conference, ACISP 1999, LNCS 1587, pp. 314- 325
Download


Paper Citation


in Harvard Style

Tobias C. (2004). Security Analysis of MOR using GL(2, R) ×θ ZZ n . In Proceedings of the 2nd International Workshop on Security in Information Systems - Volume 1: WOSIS, (ICEIS 2004) ISBN 972-8865-07-4, pages 170-179. DOI: 10.5220/0002671201700179


in Bibtex Style

@conference{wosis04,
author={Christian Tobias},
title={Security Analysis of MOR using GL(2, R) ×θ ZZ n},
booktitle={Proceedings of the 2nd International Workshop on Security in Information Systems - Volume 1: WOSIS, (ICEIS 2004)},
year={2004},
pages={170-179},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002671201700179},
isbn={972-8865-07-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on Security in Information Systems - Volume 1: WOSIS, (ICEIS 2004)
TI - Security Analysis of MOR using GL(2, R) ×θ ZZ n
SN - 972-8865-07-4
AU - Tobias C.
PY - 2004
SP - 170
EP - 179
DO - 10.5220/0002671201700179