FREEZING ALARM SYSTEM BASED ON TIME SERIES ANALISYS

Carmen Morató, M. T.Castellanos, A. M. Tarquis, Enriqueta G. Mouton

Abstract

The aim of this work is to design an alarm system that allows protecting and preventing crop-freezing damages taking decisions with enough time to react. A first step was to obtain a temperature forecast mode. In this line an hourly temperature series was analyzed with Box-Jenkins methodology ( ARIMA models). An alarm system is designed based on these forecast, at each 12 hours, in the air temperatures obtained each hour at real time and in the average errors between real and forecast each hour and each 12 hours. This system generates an index alarm that is related with the risk intensity that over a certain value will activate several sensors. This system is applicable to any area adjusting conveniently the parameters and the ARIMA model.

References

  1. Bowerman, B.L., O'Connell, R.T.; 1.987. Time Series Forecasting. United Conceps and Computer Implementation. Duxbury Press. Boxton. 2nd edition
  2. Box, G.E.P., Jenkins, G.M. , 1970. Times series Analysis:Forecasting and control. San Francisco: Holden Day
  3. Cao, W., and D.N. Moss. 1989. Temperature effect on leaf and phyllochron in wheat and barley. Crop Science. 29(4):1018-1021.
  4. Carlson, R.F.; Maccormick, J.A.; Watts, D.G., 1.970. Application of Linear Random Models to four Annual Steamflow Series. Water Resources Research. v.6, No.4, pp 1070-1078.
  5. Castellanos, M.T., 1997. Estudio y predicción de temperaturas mediante análisis de series temporales en la Comunidad de Madrid. Ph.D. Dissertation, Polytechnic University of Madrid (UPM), Spain.
  6. Fernandez, C.J., 1992. Simulation of normal annual and diurnal temperature oscillation in non-mountainous mainland Unites States. Agron. J. 84(2):244-251.
  7. Jamieson , P.D. I.R. Brooking, J.R. Porter, and D.R. Wilson. 1995. Prediction of leaf appearance in wheat: a question of temperature. Field Crops Research 41:35-44.
  8. Kantz, H., and T. Schreiber. 1997. Nonlinear time series analysis. Cambridge: Cambridge University Press.
  9. Landau, S.; Mitchell, R.A.C.; Barnett, V.; Colls, J.J.; Craigon, J. and Payne, R.W. 2000. A parsimonious, multiple-regression model of wheat yield response to environment. Agric.For. Meteorol., 101, 151-166.
  10. Matalas, N.C.; 1.967. Times Series Analysis. Water Resources Research. v.3, No.3, pp 817-829.
  11. McMichael, F., and J. Hunter. 1972. Stochastic modeling of temperature and flow in rivers. Water Resources Research. 8, No.1,87-98.
  12. Montgomery, A.L., and V. Zarnowitz.. 1998 . Time series analysis: Unemployment-United States - forescasting. Hornal of the American Statistical Association, 93,478- 492.
  13. Noakes, D.J.; McLeod, A.I.; Hipel, K.W.; 1.985. Forecasting Monthly Riverflow Times Series. International Journal of Forecasting. v.1, pp 179-190.
Download


Paper Citation


in Harvard Style

Morató C., T.Castellanos M., M. Tarquis A. and G. Mouton E. (2005). FREEZING ALARM SYSTEM BASED ON TIME SERIES ANALISYS . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 972-8865-31-7, pages 360-363. DOI: 10.5220/0001179403600363


in Bibtex Style

@conference{icinco05,
author={Carmen Morató and M. T.Castellanos and A. M. Tarquis and Enriqueta G. Mouton},
title={FREEZING ALARM SYSTEM BASED ON TIME SERIES ANALISYS},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2005},
pages={360-363},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001179403600363},
isbn={972-8865-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - FREEZING ALARM SYSTEM BASED ON TIME SERIES ANALISYS
SN - 972-8865-31-7
AU - Morató C.
AU - T.Castellanos M.
AU - M. Tarquis A.
AU - G. Mouton E.
PY - 2005
SP - 360
EP - 363
DO - 10.5220/0001179403600363