REAL-TIME TIME-OPTIMAL CONTROL FOR A NONLINEAR CONTAINER CRANE USING A NEURAL NETWORK

T. J. J. van den Boom, J. B. Klaassens, R. Meiland

Abstract

This paper considers time-optimal control for a container crane based on a Model Predictive Control approach. The model we use is nonlinear and it is planar, i.e. we only consider the swing (not the skew) and we take constraints on the input signal into consideration. Since the time required for the optimization makes time-optimal not suitable for fast systems and/or complex systems, such as the crane system we consider, we propose an off-line computation of the control law by using a neural network. After the neural network has been trained off-line, it can then be used in an on-line mode as a feedback control strategy.

References

  1. Bartolini, G., Pisano, A., and Usai, E. (2002). Second-order sliding-mode control of container cranes. Automatica, 38:1783-1790.
  2. Fliess, M., Lévine, J., and Rouchon, P. (1991). A simplified approach of crane control via a generalized statespace model. Proceedings of the 30th Conference on Decision and Control, Brighton, England.
  3. Foresee, F. and Hagan, M. (1997). Gauss-newton approximation to bayesian learning. Proceedings of the 1997 International Joint Conference on Neural Networks, pages 1930-1935.
  4. Gao, J. and Chen, D. (1997). Learning control of an overhead crane for obstacle avoidance. Proceedings of the American Control Conference, Albuquerque, New Mexico.
  5. Giua, A., Seatzu, C., and Usai, G. (1999). Oberservercontroller design for cranes via lyapunov equivalence. Automatica, 35:669-678.
  6. Hämäläinen, J., Marttinen, A., Baharova, L., and Virkkunen, J. (1995). Optimal path planning for a trolley crane: fast and smooth transfer of load. IEEE Proc.-Control Theory Appl., 142(1):51-57.
  7. Kiss, B., Lévine, J., and Mullhaupt, P. (2000). Control of a reduced size model of us navy crane using only motor position sensors. In: Nonlinear Control in the Year 2000, Editor: Isidori, A., F. Lamnabhi-Lagarrigue and W. Respondek. Springer, New York, 2000, Vol.2. pp. 1-12.
  8. Klaassens, J., Honderd, G., Azzouzi, A. E., Cheok, K. C., and Smid, G. (1999). 3d modeling visualization for studying control of the jumbo container crane. Proceedings of the American Control Conference, San Diego, California, pages 1754-1758.
  9. Mackay, D. (1992). Bayesian interpolation. Neural Computation, 4(3):415-447.
  10. Marttinen, A., Virkkunen, J., and Salminen, R. (1990). Control study with a pilot crane. IEEE Transactions on education, 33(3):298-305.
  11. Parisini, T. and Zoppoli, R. (1995). A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica, 31(10):1443-1451.
  12. Pottman, M. and Seborg, D. (1997). A nonlinear predictive control strategy based on radial basis function models. Comp. Chem. Eng., 21(9):965-980.
Download


Paper Citation


in Harvard Style

J. J. van den Boom T., B. Klaassens J. and Meiland R. (2005). REAL-TIME TIME-OPTIMAL CONTROL FOR A NONLINEAR CONTAINER CRANE USING A NEURAL NETWORK . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-29-5, pages 39-44. DOI: 10.5220/0001179800390044


in Bibtex Style

@conference{icinco05,
author={T. J. J. van den Boom and J. B. Klaassens and R. Meiland},
title={REAL-TIME TIME-OPTIMAL CONTROL FOR A NONLINEAR CONTAINER CRANE USING A NEURAL NETWORK},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2005},
pages={39-44},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001179800390044},
isbn={972-8865-29-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - REAL-TIME TIME-OPTIMAL CONTROL FOR A NONLINEAR CONTAINER CRANE USING A NEURAL NETWORK
SN - 972-8865-29-5
AU - J. J. van den Boom T.
AU - B. Klaassens J.
AU - Meiland R.
PY - 2005
SP - 39
EP - 44
DO - 10.5220/0001179800390044