INTEGRATED FEED-FORWARD ARTIFICIAL NEURAL NETWORKS SYSTEM FOR MACHINES TOOLS SELECTION

Romdhane Ben Khalifa, Noureddine Ben Yahia, Ali Zghal

Abstract

The choice of the machine tools is one of the considerations of manufacturing companies which depend primarily on machining process, by deciding how a finished product will be manufactured. The activity of tools choice is established in geometry of machining features, but it also has a direct impact on workability and execution of machine-tool. We propose in this paper an integration module of the automatic choice of machine tools in the environment of systems CAD/CAM, which consisted in the two neuronal systems NN1 and NN2; NN1 allows the automatic machining machines choice. NN2 makes it possible to choose cutting tools for machining features. In this work, we have worked two complementary parts for the integration of the automatic choice of machine tools. Firstly we developed a neuronal system for selection of machine tools classes. Secondly, we have created an interface of neuronal system integration which exploits machining features geometrical data to be carried out by Visual Basic programming.

References

  1. A. Zouidi, A. Chaari M. Stambouli and F. Fnaiech « Nonlinear Continuous Time Modeling of a High Pressure Mercury Vapor Discharge Lamp Using Feed ForwardBack-propagation Neural Networks » IEEE icit 2004 Yasmine-Hammamet, December 8-10, 2004.
  2. C.Gologlu « Machine capability and fixturing constraintsimposed automatic machining set-ups generation » Journal of Materials Processing Technology 148 (2004) 83-92.
  3. Chiung Moon , Moonhwan Lee, Yoonho Seo, Young Hae Lee « Integrated machine tool selection and operation sequencing with capacity and precedence constraints using genetic algorithm », International Journal of Computers & Industrial Engineering 43 (2002) 605- 621.
  4. G.Chryssolours, S.Zannis, C.Derdas, K.Tsirbas, « Dimensional Accuracy of FDM Parts » The 34th CIRP International Seminar on Manufacturing Systems, 16- 18 May 2001, Athenes, Greece.
  5. H.Thomas, « Génération de séquences d'alésage par approche neuronal », IDMME 2000, 3rd International Conference on Integrated Design and Manufacturing for Mechanical Engineering, Canadian Society for Mechanical Engineering.
  6. I.Drstvensek et M. Brezocnik « On intelligent CAD/CAPP Integration Base on Feature Recognition and Evolutionary Computation », IDMME 2000, 3rd International Conference on Integrated Design and Engineering, Canadian Society for Mechanical Engineering 2000.
  7. J. Dunfied, M. Tarbouchi and G. Labonte « Neural Network Based control of a Four Rotor Helicopter » IEEE icit 2004 Yasmine-Hammamet, December 8-10, 2004.
  8. L. Ding1, Y .Yue Novel « ANN-based feature recognition incorporating design by features », International Journal of Computers in Industry xxx (2004) xxx-xxx.
  9. MANDON N, L'emploi-type étudié dans sa dynamique, CEREQ, Collection Documents, 1991.
  10. Mustafa Yurdakul, « AHP as a strategic decision-making tool to justify machine tool selection », Journal of Materials Processing Technology 146 (2004) 365- 376.
  11. International Francphonie d'Automatique CIFA, pp 640 645, 5-7 Juillet, 2000.
  12. N.BEN Yahia et B.Hadj Sassi, « Elaboration automatique de phases d'usinage basé sur les réseau de neurones artificielles » Conférence International de Productique ( CPI 99) 25-26 Nov. 1999 au Maroc (FST de Tanger).
  13. N.BEN Yahia. Processus d'élaboration de automatique d'usinage : application aux prismatiques Thèse de doctorat, ENIT, 2002.
  14. N. Ahmad and A.F.M. A.Haque « Artificial Neural Networks Based process selection for cylindrical surface machining », Proceedings of the Int. Conf. on Manufacturing, ICM 2002 09-11 August, 2002, Dhaka. pp.321 - 326.
  15. R. BEN Khalifa, N. BEN Yahia, A. Zghal, « Elaboration d'un système neuronal pour le choix automatique des outils tournants », Journées Scientifiques et Pédagogiques de Mécanique et Energétique JSPME ISET Gafsa, 1, 2, 3 Décembre 2003 p101-107.
  16. R. BEN Khalifa, N. BEN Yahia, A. Zghal, « Choix automatique des machines-outils basé sur les réseaux de neurones multicouches », Premier Congrès International Conception et Modélisation des Systèmes Mécaniques, CMSM'2005 23-25 Mars s2005, Hammamet Tunisie.
  17. BEN Khalifa, N. BEN Yahia, A. Zghal, «Automated selection of machines-tools using artificial neural networks », 2nd AUS International Symposium on Mechatronics, AUS-ISM05, April 19-21, 2005, American University of Sharjah Sharjah, United Arab Emirates.
  18. R. Ben Khalifa, N. Ben Yahia, A. Zghal, «Intégration des réseaux de neurones multicouches pour le choix automatique des machines-outils », 6e Congrès international de génie industriel - 7-10 juin 2005 Besançon, France.
  19. W.Eversheim, M.Koschig, N.Michalas, « Knowledgebased Technology Data Management » The 34th CIRP International Seminar on Manufacturing Systems, 16- 18 May 2001, Athenes, Greece.
Download


Paper Citation


in Harvard Style

Ben Khalifa R., Ben Yahia N. and Zghal A. (2005). INTEGRATED FEED-FORWARD ARTIFICIAL NEURAL NETWORKS SYSTEM FOR MACHINES TOOLS SELECTION . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-29-5, pages 161-169. DOI: 10.5220/0001188101610169


in Bibtex Style

@conference{icinco05,
author={Romdhane Ben Khalifa and Noureddine Ben Yahia and Ali Zghal},
title={INTEGRATED FEED-FORWARD ARTIFICIAL NEURAL NETWORKS SYSTEM FOR MACHINES TOOLS SELECTION},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2005},
pages={161-169},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001188101610169},
isbn={972-8865-29-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - INTEGRATED FEED-FORWARD ARTIFICIAL NEURAL NETWORKS SYSTEM FOR MACHINES TOOLS SELECTION
SN - 972-8865-29-5
AU - Ben Khalifa R.
AU - Ben Yahia N.
AU - Zghal A.
PY - 2005
SP - 161
EP - 169
DO - 10.5220/0001188101610169