USING THE TRANSFERABLE BELIEF MODEL TO VEHICLE NAVIGATION SYSTEM

Khalid Touil, Mourad Zribi, Mohammed Benjelloun

Abstract

In general, navigation systems estimating a vehicle position is done either by using the Global Positioning System (GPS) or the Dead Reckoning (DR) systems. Other modern estimations are based on the combination of the two systems (GPS/DR). However, the position of a vehicle determined by GPS/DR is far from being perfect since it produces many errors. To solve this problem, a map-matching method is proposed in order to reduce the errors of localization caused by GPS/DR. This algorithm, which uses a digital road map, allows the detection of the correct road where a vehicle moves. In this paper, we introduce a new map-matching algorithm that employs the Transferable Belief Model (TBM). The TBM presents a general justification of belief theory and provides a flexible and adapted representation for the measured beliefs. Experimental results show the effectiveness of the utilization of the TBM to the vehicle navigation system.

References

  1. Bernstein D. and Kornhauser A., 1998. Map matching for personal navigation assistants, The Transportation Research Board, 77th Annual Meeting Washington.
  2. Chui C.K. and Chen G., 1991. Kalman filtering with realtime applications, Springer Verlag, second edition.
  3. Dempster A. P., 1967. Upper and lower probabilities induced by a multivlued mapping, Annals of Mathematical Statistics, AMS-38, pp. 325-339.
  4. Denoeux T., 1997. Application du modèle des croyances transférables en reconnaissance de formes, Traitement du Signal, Vol. 14, n° 5, 443-451.
  5. El Najjar M. and Bonnifait P., 2005. A road-matching method for precise vehicle localization using belief theory and Kalman filtering, Autonomous Robots 19, 173-191.
  6. Greenfeld J. S., 2002. Matching GPS observations to locations on a digital map, Proceeding of the 81th Annual Meeting of the Transportation Research Board, Washington D. C.
  7. Grewal M. S. and Andrew A. P., 1993. Kalman Filtering: Theory and Practice, Englewood Cliffs, NJ: PrenticeHall.
  8. Hummel B., Tischler K., 2005. GPS-only Map Matching: Exploiting Vehicle Position History, Driving Restriction Information and Road Network Topology in a Statistical Framework, In Proc. GIS Research UK (GISRUK), S. 68-77.
  9. Kohlas J. and Monney P. A., 1995. A Mathematical Theory of Hints: An Approach to Dempster-Shafer Theory of Evidence, Lecture Notes in Economics and Mathematical Systems No. 425. Springer-Verlag.
  10. Lee B. C., 1998. A study on the correction of positioning accuracy of car navigation system and map matching algorithm, in Proc. of 5th World Congr. Intelligent Transport Systems, Seoul, Korea.
  11. Parkinson B. W. and al., 1996. Global Positioning System, Theory and Applications, American Inst, Aeronautics and Astronautics.
  12. Shafer G., 1976. A mathematical theory of evidence, Vol. 2702. Princeton University Press.
  13. Smets P. and Kennes R., 1994. The Transferable Belief Model, Artificial Intelligence, 66, pp. 191-234.
  14. Smets P., 2002. Decision Making in a Context where Uncertainty is Represented by Belief Functions, Physica-Verlag, Heidelberg, Germany, 17-61.
  15. Smets P., 2005. Decision making in the TBM: the Necessity of the Pignistic Transformation, International Journal of Approximate Reasoning, pp. 133-147.
  16. Taylor G., Blewitt G., Steup D., Corbett S., Car A., 2001. Road reduction filtering for GPS-GIS navigation, Proc. rd of 3 AGILE Conference on Geographic Information Science, Helsinki, Finland, pp. 114-120.
  17. Zhao L., Ochieng W. Y., Quddus M. A. and Noland R. B., 2003. An Extended Kalman Filter algorithm for Integrating GPS and low-cost Dead reckoning system data for vehicle performance and emissions monitoring, The Journal of Navigation, 56, pp. 257- 275.
  18. Zhao Y., 1997. Intelligent Transportation Systems: Vehicle Location and Navigation Systems, Artech House, ISBN.
Download


Paper Citation


in Harvard Style

Touil K., Zribi M. and Benjelloun M. (2006). USING THE TRANSFERABLE BELIEF MODEL TO VEHICLE NAVIGATION SYSTEM . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-972-8865-60-3, pages 10-17. DOI: 10.5220/0001209300100017


in Bibtex Style

@conference{icinco06,
author={Khalid Touil and Mourad Zribi and Mohammed Benjelloun},
title={USING THE TRANSFERABLE BELIEF MODEL TO VEHICLE NAVIGATION SYSTEM},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2006},
pages={10-17},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001209300100017},
isbn={978-972-8865-60-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - USING THE TRANSFERABLE BELIEF MODEL TO VEHICLE NAVIGATION SYSTEM
SN - 978-972-8865-60-3
AU - Touil K.
AU - Zribi M.
AU - Benjelloun M.
PY - 2006
SP - 10
EP - 17
DO - 10.5220/0001209300100017