A PATH PLANNING STRATEGY FOR OBSTACLE AVOIDANCE

Guillaume Blanc, Youcef Mezouar, Philippe Martinet

Abstract

This paper presents an obstacle avoidance module dedicated to non-holonomic wheeled mobile robots. Chained system theory and deformable virtual zone principle are coupled to design an original framework based on path following formalism. The proposed strategy allows to correct the control output provided by a navigation module to preserve the robot security while assuring the navigation task. First, local paths and control inputs are derived from the interaction between virtual zones surrounding the robot and obstacles to efficiently prevent from collisions. The resulting control inputs and the ones provided by the navigation module are then adequately merged to ensure the success of the navigation task. Experimental results using a cart-like mobile robot equipped with a sonar sensors belt confirm the relevance of the approach.

References

  1. Barraquand, J., Langlois, B., and Latombe, J. (1992). Numerical potential field techniques for robot path planning. IEEE Transactions on System, Man and Cybernetics, 22(2):224-241.
  2. Blanc, G., Mezouar, Y., and Martinet, P. (2005). Indoor navigation of a wheeled mobile robot along visual routes. In IEEE International Conference on Robotics and Automation, ICRA'05, Barcelona, Spain.
  3. Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. The MIT Press, Cambridge, Massachusetts.
  4. Filliat, D., Kodjabachian, J., and Meyer, J.-A. (1999). Evolution of neural controllers for locomotion and obstacle avoidance in a 6-legged robot. Connection Science, 11:223-240.
  5. Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile robots. Int. Journal of Robotics Research, 5(1):90-98.
  6. Laumond, J. (1998). Robot motion planning and control, volume 229, chapter Guidelines in nonholonomic motion planning, pages 1-54. Springer.
  7. Samson, C. (1995). Control of chained systems. application to path following and time-varying stabilization of mobile robots. IEEE Transactions on Automatic Control, 40(1):64-77.
  8. Samson, C., Espiau, B., and Borgne, M. L. (1991). Robot Control : The Task Function Approach. Oxford University Press.
  9. Zapata, R., Lepinay, P., and Thompson, P. (1994). Reactive behaviors of fast mobile robots. Journal of Robotic Systems, pages 13-20.
Download


Paper Citation


in Harvard Style

Blanc G., Mezouar Y. and Martinet P. (2006). A PATH PLANNING STRATEGY FOR OBSTACLE AVOIDANCE . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-972-8865-60-3, pages 438-444. DOI: 10.5220/0001211604380444


in Bibtex Style

@conference{icinco06,
author={Guillaume Blanc and Youcef Mezouar and Philippe Martinet},
title={A PATH PLANNING STRATEGY FOR OBSTACLE AVOIDANCE},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2006},
pages={438-444},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001211604380444},
isbn={978-972-8865-60-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A PATH PLANNING STRATEGY FOR OBSTACLE AVOIDANCE
SN - 978-972-8865-60-3
AU - Blanc G.
AU - Mezouar Y.
AU - Martinet P.
PY - 2006
SP - 438
EP - 444
DO - 10.5220/0001211604380444