TRACKING MULTIPLE OBJECTS USING THE VITERBI ALGORITHM

Andreas Kräußling, Frank E. Schneider, Stephan Sehestedt

Abstract

Tracking multiple targets is a great challenge for most tracking algorithms, since these algorithms tend to loose some of the targets when they get close to each other. Hence, several algorithms like the MHT, the JPDAF and the PMHT have been developed for this task. However, these algorithms are specialized on punctiform targets, whereas in mobile robotics one has to deal with extended targets. Therefore, in this paper an algorithm is proposed that can solve this problem. It uses the Viterbi algorithm and some geometrical characteristics of the problem. The proposed algorithm was tested with real world data.

References

  1. Bar-Shalom, Y. and Fortmann, T. (1988). Tracking and Data Association. Academic Press.
  2. Fod, A., Howard, A., and Mataric, M. J. (2002). Laserbased people tracking. In Proceedings of the IEEE Intl. Conf. on Robotics and Automation, pages 3024-3029.
  3. Forney Jr., G.-D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3):268-278.
  4. Fortmann, T. E., Bar-Shalom, Y., and Scheffe, M. (1983). Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, OE-8(3).
  5. Fuerstenberg, K. C., Linzmeier, D. T., and Dietmayer, K. C. J. (2002). Pedestrian recognition and tracking of vehicles using a vehicle based multilayer laserscanner. In Proceedings of IV 2002, Intelligent Vehicles Symposium, volume 1, pages 31-35.
  6. Kräußling, A., Schneider, F. E., and Wildermuth, D. (2004a). Tracking expanded objects using the viterbi algorithm. In Proceedings of the IEEE Conference on Intelligent systems, Varna, Bulgaria.
  7. Kräußling, A., Schneider, F. E., and Wildermuth, D. (2004b). Tracking of extended crossing objects using the viterbi algorithm. In Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics (ICINCO).
  8. Kräußling, A., Schneider, F. E., and Wildermuth, D. (2005). A switching algorithm for tracking extended targets. In Proceedings of the 2nd International Conference on Informatics in Control, Automation and Robotics (ICINCO), also to be published in the Springer book of best papers of ICINCO 2005.
  9. Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science, 12:49-55.
  10. Prassler, E., Scholz, J., and Elfes, E. (1999). Tracking people in a railway station during rush-hour. In Christensen, H. I., editor, Computer Vision Systems, volume 1542, pages 162-179. Springer, lecture notes in computer science edition.
  11. Quach, T. and Farooq, M. (1994). Maximum likelihood track formation with the viterbi algorithm. In Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, Florida.
  12. Reid, D. B. (1979). An algorithm for tracking multiple targets. IEEE Trans. Automatic Control, AC-24:843- 854.
  13. Schulz, D., Burgard, W., Fox, D., and Cremers, A. B. (2001). Tracking multiple moving objects with a mobile robot. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001).
  14. Schulz, D., Fox, D., and Hightower, J. (2003). People tracking with anonymous and id-sensors using raoblackwellised particle filters. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico.
  15. Schumitch, B., Thrun, S., Bradski, G., and Olukotun, K. (2006). The information-form data association filter. In Proceedings of the 2005 Conference on Neural Information Processing Systems (NIPS), MIT Press.
  16. Shumway, R. H. and Stoffer, D. S. (2000). Time Series Analysis and Its Applications. Springer.
  17. Stannus, W., Koch, W., and Kräußling, A. (2004). On robot-borne extended object tracking using the em algorithm. In Proceedings of the 5th Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal.
  18. Streit, R. L. and Luginbuhl, T. E. (1994). Maximum likelihood method for multi-hypothesis tracking. Signal and Data Processing of Small Targets, SPIE, 2335.
  19. Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):21-71.
  20. van Keuk, G. (1971). Zielverfolgung nach kalmananwendung auf elektronisches radar. Technical Report 173, Forschungsinstitut f ür Funk und Mathematik, Wachtberg-Werthhoven, Germany.
  21. Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions On Information Theory, IT-13(2).
Download


Paper Citation


in Harvard Style

Kräußling A., E. Schneider F. and Sehestedt S. (2006). TRACKING MULTIPLE OBJECTS USING THE VITERBI ALGORITHM . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-972-8865-60-3, pages 18-25. DOI: 10.5220/0001215200180025


in Bibtex Style

@conference{icinco06,
author={Andreas Kräußling and Frank E. Schneider and Stephan Sehestedt},
title={TRACKING MULTIPLE OBJECTS USING THE VITERBI ALGORITHM},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2006},
pages={18-25},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001215200180025},
isbn={978-972-8865-60-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - TRACKING MULTIPLE OBJECTS USING THE VITERBI ALGORITHM
SN - 978-972-8865-60-3
AU - Kräußling A.
AU - E. Schneider F.
AU - Sehestedt S.
PY - 2006
SP - 18
EP - 25
DO - 10.5220/0001215200180025