Toward Automatic Defects Clustering in Industrial Production Process Combining Optical Detection and Unsupervised Artificial Neural Network Techniques

Matthieu Voiry, Kurosh Madani, Véronique Amarger, François Houbre

Abstract

A major step for high-quality optical surfaces faults diagnosis concerns scratches and digs defects detection and characterization in products. This challenging operation is very important since it is directly linked with the produced optical component’s quality. A new scratches and digs defects detection and characterization method exploiting Nomarski microscopy issued imaging has been developed. The items detected using this high-performance approach can correspond to real defects on the structure but some dusts and cleaning marks are detected too. Thus, a classification phase is necessary to complete optical devices diagnosis. In this paper, we describe a data extraction method, which supplies pertinent features from raw Nomarski images issued from industrial process. Then we apply this method to construct a database from real images. Finally we analyse the pertinence of features and the complexity of obtained database by clustering operation using an unsupervised Self Organizing Maps technique.

References

  1. M. Voiry, F. Houbre, V. Amarger, and V. Madani: Toward Surface Imperfections Diagnosis Using Optical Microscopy Imaging in Industrial Environment. ACD Workshop on Advanced Control and Diagnosis - IAR-ICD 2005, pp. 139-144 (2005)
  2. G. P. Zhang: Neural Networks for Classification: A Survey. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews, vol. 30, no. 4, pp. 451-462 (2000)
  3. M. Egmont-Petersen, D. de Ridder, and H. Handels: Image Processing with Neural Networks - A Review. Pattern Recognition, vol. 35, pp. 2279-2301 (2002)
  4. P. Bouchareine: Métrologie des Surfaces. Techniques de l'Ingénieur, vol. R1390 (1999)
  5. T. J. Holmes and W. J. Levy: Signal-processing Chracteristics of Differential-InterferenceContrast Microscopy. Applied Optics, vol. 26, no. 18, pp. 3929-3939 (1987)
  6. P. E. J. Flewitt and R. K. Wild: Light Microscopy. in Physical Methods for materials characterisation (1994)
  7. A. Choksuriwong, H. Laurent, and B. Emile: Comparison of invariant descriptors for object recognition. IEEE International Conference on Image Processing (ICIP) pp. 377-380 (2005)
  8. S. Derrode, "Représentation de Formes Planes à Niveaux de Gris par Différentes Approximations de Fourier-Mellin Analytique en vue d'Indexation de Bases d'Images." Phd Thesis - Université de Rennes I (1999)
  9. F. Ghorbel: A Complete Invariant Description for Gray Level Images by the Harmonic Analysis Approach. Pattern Recognition, vol. 15, pp. 1043-1051 (1994)
  10. G. Ravichandran and M. Trivedi: Circular-Mellin features for texture segmentation. IEEE Trans. Image Processing, vol. 4, pp. 1629-1640 (1995)
  11. P. Grassberger and I. Procaccia: Measuring the strangeness of strange attractors. Physica, vol. D9, pp. 189-208 (1983)
  12. F. Camastra and A. Vinciarelli: Intrinsic Dimension Estimation of Data: An Approach Based on Grassberger-Procaccia's Algorithm. Neural Processing Letters, vol. 14, no. 1, pp. 27-34 (2001)
  13. T. Kohonen: Self Organizing Maps, 3rd edition ed. Berlin: Springer (2001)
  14. T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas: Engineering Applications of the Self-Organizing Maps. Proceedings of the IEEE, vol. 84, no. 10, pp. 1358-1384 (1996)
  15. J. Heikkonen and J. Lampinen: Building Industrial Applications with Neural Networks.,Proc.European Symposium on Intelligent Techniques, ESIT'99 (1999)
  16. P. Demartines: Organization Measures and Representations of Kohonen Maps.,First IFIP Working Group Workshop (1992)
  17. P. Demartines and F. Blayo: Kohonen Self-Organizing Maps:Is the Normalization Necessary? Complex Systems, vol. 6, no. 2, pp. 105-123 (1992)
  18. Y. Sheng and C. Lejeune: Invariant pattern recognition using Fourier-Mellin transforms and neural networks. Journal of Optics, vol. 22, no.5, pp. 223-228 (1991)
  19. J. Lampinen and E. Oja: Distortion Tolerant Pattern Recognition Based on Self-Organizing Feature Extraction. IEEE Trans. on Neural Networks, vol. 6, pp. 539-547 (1995)
  20. O. Silvén, M. Niskanen, and H. Kauppinen: Wood Inspection with Non-Supervised Clustering. Machine Vision and Applications, vol. 13, no. 5, pp. 275-285 (2000)
Download


Paper Citation


in Harvard Style

Voiry M., Madani K., Amarger V. and Houbre F. (2006). Toward Automatic Defects Clustering in Industrial Production Process Combining Optical Detection and Unsupervised Artificial Neural Network Techniques . In Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2006) ISBN 978-972-8865-68-9, pages 25-34. DOI: 10.5220/0001223100250034


in Bibtex Style

@conference{anniip06,
author={Matthieu Voiry and Kurosh Madani and Véronique Amarger and François Houbre},
title={Toward Automatic Defects Clustering in Industrial Production Process Combining Optical Detection and Unsupervised Artificial Neural Network Techniques},
booktitle={Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2006)},
year={2006},
pages={25-34},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001223100250034},
isbn={978-972-8865-68-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2006)
TI - Toward Automatic Defects Clustering in Industrial Production Process Combining Optical Detection and Unsupervised Artificial Neural Network Techniques
SN - 978-972-8865-68-9
AU - Voiry M.
AU - Madani K.
AU - Amarger V.
AU - Houbre F.
PY - 2006
SP - 25
EP - 34
DO - 10.5220/0001223100250034