Combining Neural Tracking and Control to Improve Rehabilitation of Upper Limb Movements in Hemiplegia

M. Goffredo, I. Bernabucci, M. Schmid, S. Conforto, T. D’Alessio

Abstract

This paper aims at introducing a novel approach for assisting and restoring upper arm movements in stroke patients. The presented system integrates advanced markerless motion analysis together with an artificial neural network controller for a biomechanical arm model. The keypoint of the project is to acquire kinematics information from the healthy arm of a stroke patient during planar arm movements and elaborate them in order to obtain a self-rehabilitative stimulation of the plegic arm of the same patient. The first experimental tests show good results and allow to define working direction for the extension of the work and for its application in clinical contexts.

References

  1. Bruce H Dobkin, Strategies for stroke rehabilitation, Lancet Neurol (2004), 3: 528-36
  2. Nudo R, Wise B, SiFuentes F, Milliken G. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science (1996), 272: 1791-94.
  3. Liberson WT, Hotmquest HJ, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. (1961), 42:101-105.
  4. Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functional electrical stimulation therapy. Phys Ther. (1995), 75:490 -502.
  5. Wang RY, Yang YR, Tsai MW, Wang WT, Chan RC. Effects of functional electric stimulation on upper limb motor function and shoulder range of motion in hemiplegic patients. Am J Phys Med Rehabil. (2002) Apr;81(4):283-90.
  6. A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function Gritsenko V, Prochazka A Arch. Phys.Med. and Rehabil. (2004), 881-885
  7. Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil (1997), 608-14.
  8. Popovic D, Stojanovic A, Pjanovic A, Radosavljevic S, Popovic M, Jovic S, et al. Clinical evaluation of the bionic glove. Arch Phys Med Rehabil (1999), 299-304.
  9. Kurosawa K, Futami R, Watanabe T, Hoshimiya N. Joint angle control by FES using a feedback error learning controller. IEEE Trans Neural Syst Rehabil Eng. (2005), Sep. 13 (3):359-71.
  10. H. Gomi and M. Kawato, Neural network control for a closed-loop system using feedbackerrorlearning , Neural Networks, vol. 6, pp. 933--946, 1993.
  11. I. Bernabucci, T.D'Alessio, S.Conforto, M.Schmid Controlling planar ballistic movements by means of neural system. X Mediterranean Conf. on Med. and Biol. Eng. and Comp. IFMBE Proceedings, MEDICON 2004 Ischia, Italy (2004)
  12. M. Goffredo, M. Carli, S. Conforto, D. Bibbo, A. Neri, T. D'Alessio, Evaluation of Skin and Muscular Deformations in a non-rigid motion analysis, Proceedings ISandT/SPIE's International Symposium on Medical Imaging San Diego, California, USA. (2005)
  13. W. Maa, X. Maa, S. Tsoa, Z. Panb, A direct approach for subdivision surface fitting from a dense triangle mesh, Computer-Aided Design 36 (2004) 525-536
  14. M. Goffredo, M. Carli, M. Schmid, A. Neri, Study of muscular deformation based on surface slope estimation, Image Processing: Algorithms and Systems V - Electronic Imaging 2006 San Jose, California, USA (2006)
  15. Kass M.,Witkin A., Terzopoulos D.: Snakes: Active contour models. Proc. 1st Int. Conf. on Computer Vision (1987) 259-268
  16. Lee A (2002) webpage www.virtualdub.org
  17. Canny, J.: A Computational Approach to Edge Detection. IEEE Trans PAMI (1986) 679- 698
  18. L. L. Massone and J. D. Myers "The role of the plant properties in arm trajectory formation: a neural network study," IEEE Trans. Sys. Man Cyb. vol. 26, pp. 719-732, 1996.
  19. R. Drillis, R. Contini, and M. Bluestein, "Body Segment Parameters; a Survey of Measurement Techniques," Artif Limbs, vol. 25, pp. 44-66, 1964.
  20. Wagg, D. K. and Nixon, M. S. (2004) Automated Markerless Extraction of Walking People Using Deformable Contour Models. Computer Animation and Virtual Worlds 15(3-4) pp. 399-406.
Download


Paper Citation


in Harvard Style

Goffredo M., Bernabucci I., Schmid M., Conforto S. and D’Alessio T. (2006). Combining Neural Tracking and Control to Improve Rehabilitation of Upper Limb Movements in Hemiplegia . In Proceedings of the 2nd International Workshop on Biosignal Processing and Classification - Volume 1: BPC, (ICINCO 2006) ISBN 978-972-8865-67-2, pages 96-105. DOI: 10.5220/0001224400960105


in Bibtex Style

@conference{bpc06,
author={M. Goffredo and I. Bernabucci and M. Schmid and S. Conforto and T. D’Alessio},
title={Combining Neural Tracking and Control to Improve Rehabilitation of Upper Limb Movements in Hemiplegia},
booktitle={Proceedings of the 2nd International Workshop on Biosignal Processing and Classification - Volume 1: BPC, (ICINCO 2006)},
year={2006},
pages={96-105},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001224400960105},
isbn={978-972-8865-67-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on Biosignal Processing and Classification - Volume 1: BPC, (ICINCO 2006)
TI - Combining Neural Tracking and Control to Improve Rehabilitation of Upper Limb Movements in Hemiplegia
SN - 978-972-8865-67-2
AU - Goffredo M.
AU - Bernabucci I.
AU - Schmid M.
AU - Conforto S.
AU - D’Alessio T.
PY - 2006
SP - 96
EP - 105
DO - 10.5220/0001224400960105