PCA-BASED DATA MINING PROBABILISTIC AND FUZZY APPROACHES WITH APPLICATIONS IN PATTERN RECOGNITION

Luminita State, Catalina Cocianu, Panayiotis Vlamos, Viorica Stefanescu

Abstract

The aim of the paper is to develop a new learning by examples PCA-based algorithm for extracting skeleton information from data to assure both good recognition performances, and generalization capabilities. Here the generalization capabilities are viewed twofold, on one hand to identify the right class for new samples coming from one of the classes taken into account and, on the other hand, to identify the samples coming from a new class. The classes are represented in the measurement/feature space by continuous repartitions, that is the model is given by the family of density functions (fh) hϵH, where H stands for the finite set of hypothesis (classes). The basis of the learning process is represented by samples of possible different sizes coming from the considered classes. The skeleton of each class is given by the principal components obtained for the corresponding sample.

References

  1. Al Sultan K.S., Selim,S.Z., 1993. Global Algorithm for Fuzzy Clustering Problem, Patt.Recogn. 26,1375-1361
  2. Bensaid,A., Hall,L.O.,Bezdek,J.C., Clarke,L.P., 1996 Partially supervised clustering for image segmentation, Patt.Recog.,29(5),859-871.
  3. Bezdek,J.C., Keller,J., Krisnapuram,R., Pal,N.K., 2005. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, Springer Verlag
  4. Bezdek, J.C., 1981, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press
  5. Bensaid, H., Bezdek,J.C., Clarke, L.P., Silbiger, M.L., Arrington, J.A., Murtagh, R.F., 1996. Validity-Guided (Re)clustering with applications to image segmentation, IEEE Trans. Fuzzy Systems, 4, 112-123
  6. Clark,M., Hall,L.O., Goldgof,D.B., Clarke,L.P., Velthuizen,R.P., Silbiger,M.S., 1994. MRI Segmentation using Fuzzy Clustering Techniques, IEEE Engineering in Medicine and Biology, 1994
  7. Everitt, B. S., 1978. Graphical Techniques for Multivariate Data, North Holland, NY
  8. Gath,J., Geva,A.B., 1989. Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern.Anal.Machine Intell, 11, 773-781
  9. A. Hyvarinen, J. Karhunen, E. Oja, 2001. Independent Component Analysis, John Wiley &Sons
  10. Huang,C., Shi,Y. 2002. Towards Efficient Fuzzy Information Processing, Physica-Verlag, Heidelberg
  11. Jain,A.K., Dubes,R., 1988. Algorithms for Clustering Data, Prentice Hall,Englewood Cliffs, NJ.
  12. Jin,Y., 2003. Advanced Fuzzy Systems Design and Applications, Physica-Verlag, Heidelberg
  13. Krishnapuram, R., Keller,J.M., 1993. A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1(2)
  14. Li,C., Goldgof,D.B., Hall, L.O., 1993. Automatic segmentation and tissue labelling of MR brain images, IEEE Transactions on Medical Imaging, 12(4),1033- 1048
  15. Pal,N.,R., Bezdek,J.C., 1995. On Cluster validity for the Fuzzy c-Means Model, IEEE Trans. On Fuzzy Syst. ,Vol. 3,no.3
  16. Smith,S.P. ,Jain,A.K., 1984. Testing for uniformity in multidimensional data, IEEE Trans.Patt. Anal.amd Machine Intell., 6(1),73-81
  17. Wu,K-L., Yang,M-S, 2005. A Cluster validity index for fuzzy clustrering, Patt.Recog.Lett. 26, 1275-1291
  18. Zahid,N., Abouelala,O., Limouri,M., Essaid,A., 1999. Unsupervised fuzzy clustering, Patt.Recog.Lett., 20,1
Download


Paper Citation


in Harvard Style

State L., Cocianu C., Vlamos P. and Stefanescu V. (2006). PCA-BASED DATA MINING PROBABILISTIC AND FUZZY APPROACHES WITH APPLICATIONS IN PATTERN RECOGNITION . In Proceedings of the First International Conference on Software and Data Technologies - Volume 2: ICSOFT, ISBN 978-972-8865-69-6, pages 55-60. DOI: 10.5220/0001313500550060


in Bibtex Style

@conference{icsoft06,
author={Luminita State and Catalina Cocianu and Panayiotis Vlamos and Viorica Stefanescu},
title={PCA-BASED DATA MINING PROBABILISTIC AND FUZZY APPROACHES WITH APPLICATIONS IN PATTERN RECOGNITION},
booktitle={Proceedings of the First International Conference on Software and Data Technologies - Volume 2: ICSOFT,},
year={2006},
pages={55-60},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001313500550060},
isbn={978-972-8865-69-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Software and Data Technologies - Volume 2: ICSOFT,
TI - PCA-BASED DATA MINING PROBABILISTIC AND FUZZY APPROACHES WITH APPLICATIONS IN PATTERN RECOGNITION
SN - 978-972-8865-69-6
AU - State L.
AU - Cocianu C.
AU - Vlamos P.
AU - Stefanescu V.
PY - 2006
SP - 55
EP - 60
DO - 10.5220/0001313500550060