Ayellet Tal, Emanuel Zuckerberger


This paper examines the application of the human vision theories of Marr and Biederman to the retrieval of three-dimensional objects. The key idea is to represent an object by an attributed graph that consists of the object’s meaningful components as nodes, where each node is fit to a basic shape. A system that realizes this approach was built and tested on a database of about 400 objects and achieves promising results. It is shown that this representation of 3D objects is very compact. Moreover, it gives rise to a retrieval algorithm that is invariant to non-rigid transformations and does not require normalization.


  1. Bates, D. and Watts, D. (1988). Nonlinear Regression and Its Applications. John Wiley & Sons, New York.
  2. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94:115-147.
  3. Biederman, I. (1988). Aspects and extensions of a theory of human image understanding. Pylyshyn Z. editor, Computational Processes in Human Vision: An Interdisciplinary Perspective, pages 370-428.
  4. Biederman, I. (1995). Visual object recognition. S. Kosslyn, D. Osherson, editors. An Invitation to Cognitive Science, 2:121-165.
  5. Chazelle, B., Dobkin, D., Shourhura, N., and Tal, A. (1997). Strategies for polyhedral surface decomposition: An experimental study. Computational Geometry: Theory and Applications, 7(4-5):327-342.
  6. Cornea, N., Demirci, M., Silver, D., Shokoufandeh, A., Dickinson, S., and Kantor, P. (2005). 3D object retrieval using many-to-many matching of curve skeletons. In IEEE International Conference on Shape Modeling and Applications, pages 368-373.
  7. Duda, R., Hart, P., and Stork, D. (2000). Pattern Classification. John Wiley & Sons, New York.
  8. Elad, M., Tal, A., and Ar, S. (2001). Content based retrieval of vrml objects - an iterative and interactive approach. EG Multimedia, 39:97-108.
  9. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. (2001). Topology matching for fully automatic similarity estimation of 3D shapes. SIGGRAPH, pages 203-212.
  10. Katz, S., Leifman, G., and Tal, A. (2005). Mesh segmentation using feature point and core extraction. The Visual Computer, 21(8-10):865-875.
  11. Katz, S. and Tal, A. (2003). Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (SIGGRAPH), 22(3):954-961.
  12. Kazhdan, M., Chazelle, B., Dobkin, D., and Funkhouser, T. (2003a). A reflective symmetry descriptor for 3D models. Algorithmica, page to appear.
  13. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003b). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Symposium on Geometry Processing.
  14. Keren, D., Cooper, D., and Subrahmonia., J. (1994). Describing complicated objects by implicit polynomials. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1):38-53.
  15. Lee, S., Kim, J., and Groen, F. (1990). Translation, rotation-, and scale-invariant recognition of handdrawn symbols in schematic diagrams. Int. J. Pattern Recognition and Artificial Intelligence, 4(1):1-15.
  16. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., and Seidel, H.- P. (2005). Mesh scissoring with minima rule and part salience. Computer Aided Geometric Design.
  17. Leifman, G., Meir, R., and Tal, A. (2005). Semanticoriented 3D shape retrieval using relevance feedback. The Visual Computer, 21(8-10):649-658.
  18. Li, X., Toon, T., Tan, T., and Huang, Z. (2001). Decomposing polygon meshes for interactive applications. In Proceedings of the 2001 symposium on Interactive 3D graphics, pages 35-42.
  19. Mangan, A. and Whitaker, R. (1999). Partitioning 3D surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics, 5(4):308-321.
  20. Marr, D. (1982). Vision - A computational investigation into the human representation and processing of visual information. W.H. Freeman, San Francisco.
  21. Messmer, B. (1995). GMT - Graph Matching Toolkit. PhD thesis, University of Bern.
  22. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2001). Matching 3D models with shape distributions. In Proceedings of the International Conference on Shape Modeling and Applications, pages 154-166.
  23. Paquet, E., Murching, A., Naveen, T., Tabatabai, A., and Rioux, M. (2000). Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, pages 103-122.
  24. Pearce, A., Caelli, T., and Bischof, W. (1994). Rulegraphs for graph matching in pattern recognition. Pattern Recognition, 27(9):1231-1246.
  25. Rocha, J. and Pavlidis, T. (1994). A shape analysis model with applications to a character recognition system. IEEE Trans. Pattern Analysis and Machine Intelligence, 16:393-404.
  26. Shamir, A. (2004). A formalization of boundary mesh segmentation. In Proceedings of the second International Symposium on 3DPVT.
  27. Subrahmonia, J., Cooper, D., and Keren, D. (1996). Practical reliable bayesian recognition of 2d and 3D objects using implicit polynomials and algebraic invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(5):7505-519.
  28. Sundar, H., Silver, D., Gagvani, N., and Dickinson, S. (2003). Skeleton based shape matching and retrieval. In Shape Modelling and Applications.
  29. Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11):1115-1138.
  30. Veltkamp, R. (2001). Shape matching: Similarity measures and algorithms. In Shape Modelling International, pages 188-197.
  31. Vranic, D. and Saupe, D. (2002). Description of 3D-shape using a complex function on the sphere. In Proceedings IEEE International Conference on Multimedia and Expo, pages 177-180.
  32. Wang, Y.-K., Fan, K.-C., and Horng, J.-T. (1997). Geneticbased search for error-correcting graph isomorphism. IEEE Trans. Systems, Man, and Cybernetics, 27:588- 597.
  33. Wong, E. (1992). Model matching in robot vision by subgraph isomorphism. Pattern Recognition, 25(3):287- 304.
  34. Zuckerberger, E., Tal, A., and Shlafman, S. (2002). Polyhedral surface decomposition with applications. Computers & Graphics, 26(5):733-743.

Paper Citation

in Harvard Style

Tal A. and Zuckerberger E. (2006). MESH RETRIEVAL BY COMPONENTS . In Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, ISBN 972-8865-39-2, pages 142-149. DOI: 10.5220/0001352001420149

in Bibtex Style

author={Ayellet Tal and Emanuel Zuckerberger},
booktitle={Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,},

in EndNote Style

JO - Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,
SN - 972-8865-39-2
AU - Tal A.
AU - Zuckerberger E.
PY - 2006
SP - 142
EP - 149
DO - 10.5220/0001352001420149