DIFFUSION BASED PHOTON MAPPING

Lars Schjøth, Ole Fogh Olsen, Jon Sporring

Abstract

Density estimation employed in multi-pass global illumination algorithms give cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. In particular this blurring erodes fine structures and sharp lines prominent in caustics. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features, while eliminating noise. We call our method diffusion based photon mapping.

References

  1. Jensen, H. W. (1996). The Photon Map in Global Illumination. PhD thesis, Technical University of Denmark, Lyngby.
  2. Jensen, H. W. (2001). Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick, MA, USA.
  3. Jensen, H. W. and Christensen, N. J. (1995). Photon maps in bidirectional monte carlo ray tracing of complex objects. Computers & Graphics, 19(2):215-224.
  4. Myszkowski, K. (1997). Lighting reconstruction using fast and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques 7897, pages 251-262, London, UK. Springer-Verlag.
  5. Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI12(7):629-639.
  6. Schjøth, L. (2005). Diffusion based photon mapping. Technical report, IT University of Copenhagen, Copenhagen, Denmark.
  7. Schregle, R. (2003). Bias compensation for photon maps. Computer Graphics Forum, 22(4):729-742.
  8. Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. (1995). Global illumination via density-estimation. Rendering Techniques 7895, pages 219-230.
  9. Walter, B. (1998). Density estimation techniques for global illumination. PhD thesis, Cornell University.
  10. Walter, B., Hubbard, P. M., Shirley, P., and Greenberg, D. P. (1997). Global illumination using local linear density estimation. ACM Trans. Graph., 16(3):217-259.
  11. Weickert, J. (1995). Multiscale texture enhancement. Lecture Notes in Computer Science, 970:230-237.
  12. Weickert, J. (1998). Anisotropic Diffusion in Image Processing. B. G. Teubner, Stuttgart, Germany.
Download


Paper Citation


in Harvard Style

Schjøth L., Fogh Olsen O. and Sporring J. (2006). DIFFUSION BASED PHOTON MAPPING . In Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, ISBN 972-8865-39-2, pages 168-175. DOI: 10.5220/0001358101680175


in Bibtex Style

@conference{grapp06,
author={Lars Schjøth and Ole Fogh Olsen and Jon Sporring},
title={DIFFUSION BASED PHOTON MAPPING},
booktitle={Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,},
year={2006},
pages={168-175},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001358101680175},
isbn={972-8865-39-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,
TI - DIFFUSION BASED PHOTON MAPPING
SN - 972-8865-39-2
AU - Schjøth L.
AU - Fogh Olsen O.
AU - Sporring J.
PY - 2006
SP - 168
EP - 175
DO - 10.5220/0001358101680175