FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES

H. Abrishami Moghaddam, M. Ghayoumi

Abstract

In this paper, we present an approach that unifies sub-space feature extraction and support vector classification for face recognition. Linear discriminant, independent component and principal component analyses are used for dimensionality reduction prior to introducing feature vectors to a support vector machine. The performance of the developed methods in reducing classification error and providing better generalization for high dimensional face recognition application is demonstrated.

References

  1. Sun, Z., Bebis, G., Miller, R., 2004. Object detection using feature subset selection. Pattern Recognition, Elsevier Vol. 37, No. 11, pp. 2165-2176.
  2. Jain, A., Duin, R., Mao, J., 2001. Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Machine Intell , Vol. 22, No. 1, pp. 4-37.
  3. Belhumeur, P. N., Hespanha, J. P., Kriegman, D. J., 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell , Vol. 19, pp. 711-720.
  4. Moghaddam, B., 2002. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. Pattern Anal. Machine Intell, Vol. 24, No. 6, pp. 780-788.
  5. Othman, H., Aboulnasr, T., 2003. A separable low complexity 2D HMM with application to face recognition. IEEE Trans. Pattern Anal. Machine Intell, Vol. 25, No. 10, pp. 1229-1238.
  6. Er, M. J., Wu, S., Lu, J., Toh, H.L., 2002. Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Networks, Vol. 13, No. 3, pp. 697 - 710.
  7. Lee, K., Chung, Y., Byun, H., 2002. SVM-based face verification with feature set of small size. Electronics Letters, Vol. 38, No. 15, pp. 787-789.
  8. Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cognitive Neurosci.
  9. Liu, C., Wechsler, H., 2003. Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Networks, Vol. 14, No. 4, pp. 919-928.
  10. Yu, H., Yang, J., 2001. A direct LDA algorithm for high dimensional data?with application to face recognition. Pattern Recognition, Vol. 34, No. 10, pp. 2067-2070.
  11. Heisele, B., Ho, P., Poggio, T., 2001. Face recognition with support vector machines: global versus component-based approach. Proceedings of the 8th IEEE International Conference on Computer Vision ,Vol. 2, pp. 688 - 694.
  12. Vapnik, V., 1995. The nature of statistical learning theory. ,Springer, Berlin.
  13. Wang, Y., Chua, C. S., Ho, Y. K., 2002. Facial feature detection and face recognition from 2D and 3D images. Pattern Recognition Letters, Vol. 23, No. 10, pp. 1191-1202.
  14. Qi, Y., Doermann, D., DeMenthon, D.,2001. Hybrid independent component analysis and support vector machine learning scheme for face detection. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3327-3338.
  15. Fortuna, J., Capson, D., 2004. Improved support vector classification using PCA and ICA feature space modification. Pattern Recognition, Vol. 37, No. 6, pp. 1117-1129.
  16. Bartlett, M., Sejnowski, T.,1997. Independent components of face images: a representation for face recognition. Proceedings of the Fourth Annual Joint Symposium on Neural Computation.
  17. Shi, Z., Tang, H., Tang, Y., 2004. A new fixed-point algorithm for independent component analysis. Neurocomputing , Vol. 56, pp. 467- 473.
  18. Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines. Cambridge University Press.
  19. Georghiades, S., Belhumeur, N., Kriegman, D. J., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trns, Pattern Anal, Machine Intell, pp. 643-660.
  20. Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition, Academic Press,New York . 2nd edition.
Download


Paper Citation


in Harvard Style

Abrishami Moghaddam H. and Ghayoumi M. (2006). FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 972-8865-40-6, pages 480-485. DOI: 10.5220/0001363604800485


in Bibtex Style

@conference{visapp06,
author={H. Abrishami Moghaddam and M. Ghayoumi},
title={FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2006},
pages={480-485},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001363604800485},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES
SN - 972-8865-40-6
AU - Abrishami Moghaddam H.
AU - Ghayoumi M.
PY - 2006
SP - 480
EP - 485
DO - 10.5220/0001363604800485