DECISION SUPPORT SYSTEM FOR BREAST CANCER DIAGNOSIS BY A META-LEARNING APPROACH BASED ON GRAMMAR EVOLUTION

Albert Fornells-Herrera, Elisabet Golobardes-Ribé, Ester Bernadó-Mansilla, Joan Martí-Bonmatí

Abstract

The incidence of breast cancer varies greatly among countries, but statistics show that every year 720,000 new cases will be diagnosed world-wide. However, a low percentage of women who suffer it can be detected using mammography methods. Therefore, it is necessary to develop new strategies to detect its formation in early stages. Many machine learning techniques have been applied in order to help doctors in the diagnosis decision process, but its definition and application are complex, getting results which are not often the desired. In this article we present an automatic way to build decision support systems by means of the combination of several machine learning techniques using a Meta-learning approach based on Grammar Evolution (MGE). We will study its application over different mammographic datasets to assess the improvement of the results.

References

  1. Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundations issues, methodological variations, and system approaches. IA Communications, 7:39-59.
  2. Aha, D. and Kibler, D. (1991). Instance-based learning algorithms. Machine Learning, 6:37-66.
  3. Ali, K. M. and Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine Learning, 24(3):173-202.
  4. Blake, C. and Merz, C. (1998). UCI repository of machine learning databases.
  5. Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2):123-140.
  6. Breiman, L. (1996b). Stacked regression. Machine Learning, 24(1):49-64.
  7. Campani, R., Bazzani, A., Bevilacqua, A., Bollini, D., and Lanconelli, N. (2000). Automatic detection of clustered microcalcifications using combined method with a support vector machine classifier. Int. Workshop on Digital Mammography.
  8. Chan, P. K. and Stolfo, S. J. (1993). Experiments on multistrategy learning by meta-learning. In CIKM 7893: Proceedings of the second international conference on Information and knowledge management, pages 314- 323, New York, NY, USA. ACM Press.
  9. Cheng, H., Lui, Y., and Freinanis, R. (1998). A novel approach to microcalficiations detection using fuzzy logic technique. IEEE Transaction on Medical Imaging, pages 442-450.
  10. Edwards, D., Kupinski, M., Nagel, R., Nishikawa, R., and Papaioannou, J. (2000). Using a bayesian neural network to optimally eliminate false-positive microcalcifications detection in a cad scheme. Int. Workshop on Digital Mammography.
  11. Flann, N. S. and Dietterich, T. G. (1989). A study of explanation-based methods for inductive learning. Machine Learning, 4(2):187-226.
  12. Fornells, A., Camps, J., Golobardes, E., and Garrell, J. (2005a). Comparison of strategies based on evolutionary computation for the design of similarity functions.
  13. Fornells, A., Camps, J., Golobardes, E., and Garrell, J. (2005b). Incorporación de conocimiento en forma de restricciones sobre algoritmos evolutivos para la búsqueda de funciones de similitud. In IV Congreso Espan˜ol sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB'2005, pages 397-404. Thomson.
  14. Frank, E. and Witten, I. H. (1998). Generating accurate rule sets without global optimization. In ICML 7898: Proceedings of the Fifteenth Int. Conference on Machine Learning, pages 144-151. Morgan Kaufmann Publishers Inc.
  15. Freeman, J. A. and Skapura, D. M. (1991). Neural Networks: Algorithms, Applications and Programming Techniques. Addison Wesley.
  16. Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In International Conference on Machine Learning, pages 148-156.
  17. Garrell, J., Golobardes, E., Bernadó, E., and Llorà, X. (1999). Automatic diagnosis with genetic algorithms and case-based reasoning. AI in Engineering, 13(4):362-367.
  18. Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization, and Machine Learning. Addison-Wesley.
  19. Golobardes, E., Llorà, X., Salamó, M., and Martí, J. (2002). Computer aided diagnosis with case-based reasoning and genetic algorithms. Journal of Knowlegde Based Systems, pages 45-52.
  20. Golobardes, E., Nieto, M., Salamó, M., J.Camps, Calzada, G., Martí, J., and Vernet, D. (2001). Generació de funcions de similitud mitjanc¸ant la programació genètica pel raonament basat en casos. CCIA, 25:100-107.
  21. Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer, P. (2000). The digital database for screening mammography. Int. Workshop on Dig. Mammography.
  22. Kauffman, G., Salfity, M., Granitto, P., and Ceccato, H. (2000). Automated detection and classification of clustered microcalcifications using morphological filtering and statistical techniques. International Workshop on Digital Mammography.
  23. Koza, J. R. (1992). Genetic Programming. Programing of computers by means of natural selection. MIT Press.
  24. Kwok, S. W. and Carter, C. (1990). Multiple decision trees. In UAI 7888: Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, pages 327-338. North-Holland.
  25. Martí, J., Espa n˜ol, J., Golobardes, E., Freixenet, J., García, R., and Salamó, M. (2000). Classification of microcalcifications in digital mammograms using case-based reasonig. Int. Workshop on Digital Mammography.
  26. Oliver, A., Freixenet, J., Bosch, A., Raba, D., and Zwiggelaar, R. (2005a). Automatic classification of breast tissue. Iberian Conference on Pattern Recognition and Image Analysis, pages 431-438.
  27. Oliver, A., Freixenet, J., and Zwiggelaar, R. (2005b). Automatic classification of breast density. IEEE International Conference on Image Processing. to appear.
  28. Oliver, J. J. and Dowe, D. L. (1995). On pruning and averaging decision trees. In Proceedings 12th Int. Conf. Machine Learning, pages 430-437. Morgan Kaufmann.
  29. Platt, J. (1998). Fast training of support vector machine using sequential minimal optimizations. In Schölkipf, B., Burges, C., and Smola, A., editors, Advances in Kernel Methods-Support Vector Learning, Cambridge, M.A. MIT PRess.
  30. Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn., 1(1):81-106.
  31. Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.
  32. Ryan, C., Collins, J. J., and O'Neill, M. (1998). Grammatical evolution: Evolving programs for an arbitrary language. In Proceedings of the First European Workshop on Genetic Programming, volume 1391, pages 83-95. Springer-Verlag.
  33. Samuels, T. H. (1998). Illustrated Breast Imaging Reporting and Data System BIRADS. American College of Radiology Publications, 3rd edition.
  34. Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1997). Boosting the margin: a new explanation for the effectiveness of voting methods. In Proc. 14th International Conference on Machine Learning, pages 322-330. Morgan Kaufmann.
  35. Suckling, J., Parker, J., and Dance, D. (1994). The mammographic image analysis society digital mammogram database. In Gale, A., editor, Proc. 2nd Internat. Workshop on Digital Mammography, pages 211-221.
  36. Ting, K. M. and Witten, I. H. (1997a). Stacked generalizations: When does it work? In IJCAI, pages 866-873.
  37. Ting, K. M. and Witten, I. H. (1997b). Stacking bagged and dagged models. In Proc. 14th Int. Conference on Machine Learning, pages 367-375. Morgan Kaufmann.
  38. Vallespí, C., Golobardes, E., and Martí, J. (2002). Improving reliability in classification of microcalcifications in digital mammograms using case-based reasoning. In Proceedings of the 5th Catalonian Conference on AI: Topics in Artificial Intelligence, Lecture Notes In Computer Science, volume 2504, pages 101- 112, London, UK. Springer-Verlag.
  39. Winfields, D., Silbiger, M., and Brown, G. (1994). Technology transfer in digital mamography. Report of the Joint National Cancer Institute, Workshop of May 19- 20, Invest. Radiol, pages 507-515.
  40. Witten, I. H. and Frank., E. (2000). DataMining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers.
  41. Wolpert, D. H. (1990). Stacked generalization. Technical Report LA-UR-90-3460, The Santa Fe Institute, New Mexic.
Download


Paper Citation


in Harvard Style

Fornells-Herrera A., Golobardes-Ribé E., Bernadó-Mansilla E. and Martí-Bonmatí J. (2006). DECISION SUPPORT SYSTEM FOR BREAST CANCER DIAGNOSIS BY A META-LEARNING APPROACH BASED ON GRAMMAR EVOLUTION . In Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-972-8865-42-9, pages 222-229. DOI: 10.5220/0002492202220229


in Bibtex Style

@conference{iceis06,
author={Albert Fornells-Herrera and Elisabet Golobardes-Ribé and Ester Bernadó-Mansilla and Joan Martí-Bonmatí},
title={DECISION SUPPORT SYSTEM FOR BREAST CANCER DIAGNOSIS BY A META-LEARNING APPROACH BASED ON GRAMMAR EVOLUTION},
booktitle={Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2006},
pages={222-229},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002492202220229},
isbn={978-972-8865-42-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - DECISION SUPPORT SYSTEM FOR BREAST CANCER DIAGNOSIS BY A META-LEARNING APPROACH BASED ON GRAMMAR EVOLUTION
SN - 978-972-8865-42-9
AU - Fornells-Herrera A.
AU - Golobardes-Ribé E.
AU - Bernadó-Mansilla E.
AU - Martí-Bonmatí J.
PY - 2006
SP - 222
EP - 229
DO - 10.5220/0002492202220229