A. Pereira, L. Rocha, F. Mourão, T. Torres, W. Meira Jr., P. Goes


Online auctions have several aspects that violate the common assumptions made by the traditional economic auction theory. An online auction can be seen as an interactive economic information system, where usersystem interactions are usually very complex. It is important to note that the interactions are not isolated, but successive interactions become a loop-feedback mechanism, that we call reactivity, where the user behavior affects the auction negotiation and vice-versa. In this paper we describe a new hierarchical characterization model for online auctions and apply this model to a real case study, showing its advantages in discovering some online auction negotiation patterns. The results demonstrate that our characterization model provides an efficient way to open the auction dynamics’s “black box”. We also propose an abstraction named Auction Model Graph (AMG) which enables the temporal analysis of the negotiation. This work is part of a research to analyze reactivity in e-business, that may contribute to understand the business dynamics and has wide applicability to activities such as designing recommendation agents, service personalization, and site interaction enhancement.


  1. Achtert, E., Kriegel, H., Pryakhin, A., and Schubert, M. (2005). Hierarchical density-based clustering for multi-represented objects. In First International Workshop on Mining Complex Data MCD, Houston, Texas. IEEE.
  2. Anderson, S., Friedman, D., Milam, G., and Singh, N. (2004). Seller strategies on ebay. Industrial Organization 0412004, Economics Working Paper Archive EconWPA.
  3. Ariely, D. and Simonson, I. (2003). Buying, bidding, playing, or competing? value assessment and decision dynamics in online auctions. Journal of Consumer Psychology, 13(1):113-123.
  4. Bajari, P. and Hortacsu, A. (2003). The winner's curse, reserve prices, and endogenous entry: Empirical insights from ebay auctions. RAND Journal of Economics, 34(2):329-55.
  5. Bapna, R., Goes, P. B., and Gupta, A. (2003). Replicating online yankee auctions to analyze auctioneers' and bidders' strategies. Information Systems Research, 14(3):244-268.
  6. Bapna, R., Goes, P. B., Gupta, A., and Jin, Y. (2004). User heterogeneity and its impact on electronic auction market design: An empirical exploration research essays. MIS Quarterly, 28(1).
  7. Bock, H.-H. (2002). Data mining tasks and methods - classification: the goal of classification. pages 254-258.
  8. Chakravarti, D., Greenleaf, E. A., Sinha, A., Cheema, A., Cox, J. C., Friedman, D., Ho, T. H., Isaac, R. M., Rapoport, A. A. M. A., Rothkopf, M. H., Srivastava, J., and Zwick, R. (2002). Auctions: Research opportunities in marketing. Marketing Letters, 13(3):279- 293.
  9. Chelcea, S., Silva, A. D., Lechevallier, Y., Tanasa, D., and Trousse, B. (2005). Pre-processing and clustering complex data in e-commerce domain. In First International Workshop on Mining Complex Data MCD, Houston, Texas. IEEE.
  10. Easley, R. F. and Tenorio, R. (2004). Jump bidding strategies in internet auctions. Manage. Sci., 50(10):1407- 1419.
  11. EBay (2005). eBay, Inc.
  12. Gilkeson, J. H. and Reynolds, K. (2003). Determinants of internet auction success and closing price: An exploratory study. Psychology & Marketing, 20(6):537- 566.
  13. Hartigan, J. (1975). Clustering Algorithms. John Wiley and Sons, Inc.
  14. Lucking-Reiley, D. (1999). Using field experiments to test equivalence between auction formats: Magic on the internet. American Economic Review, 89(5):1063- 1080.
  15. Melnik, M. I. and Alm, J. (2002). Does a seller's ecommerce reputation matter? evidence from ebay auctions. Journal of Industrial Economics, 50(3):337- 349.
  16. Menascé, D. A. and Almeida, V. A. F. (2000). Scaling for E Business: Technologies, Models, Performance, and Capacity Planning. Prentice Hall PTR, Upper Saddle River, NJ, USA.
  17. Menascé;, D. A., Almeida, V. A. F., Fonseca, R., and Mendes, M. A. (1999). A methodology for workload characterization of e-commerce sites. In EC 7899: Proceedings of the 1st ACM conference on Electronic commerce, pages 119-128, New York, NY, USA. ACM Press.
  18. Pereira, A., Franco, G., Silva, L., Meira, Jr., W., and Santos, W. (2004). The USAR characterization model. In Proceedings of the IEEE 7th Annual Workshop on Workload Characterization (WWC-7), Austin, Texas, USA. IEEE Computer Society.
  19. Pereira, A., Mourao, F., Goes, P., and Meira, Jr., W. (2006a). Reactivity in online auctions. In et al., T. G., editor, Workshop Reactivity on the Web at the International Conference on Extending Database Technology - EDBT 2006, volume 4254 of Lecture Notes in Computer Science, pages 909-918, Munich, Germany. Springer.
  20. Pereira, A., Silva, L., Meira Jr., W., and Santos, W. (2006b). Assessing the impact of reactive workloads on the performance of web applications. In ISPASS-2006: IEEE International Symposium on Performance Analysis of Systems and Software, Austin, TX, USA. IEEE Computer Society.
  21. Roth, A. and Ockenfels, A. (2002). Last-minute bidding and the rules for ending second-price auctions: Evidence from ebay and amazon auctions on the internet. American Economic Review, 92(4):1093-1103.

Paper Citation

in Harvard Style

Pereira A., Rocha L., Mourão F., Torres T., Meira Jr. W. and Goes P. (2007). ANALYZING EBAY NEGOTIATION PATTERNS . In Proceedings of the Third International Conference on Web Information Systems and Technologies - Volume 3: WEBIST, ISBN 978-972-8865-79-5, pages 84-91. DOI: 10.5220/0001267000840091

in Bibtex Style

author={A. Pereira and L. Rocha and F. Mourão and T. Torres and W. Meira Jr. and P. Goes},
booktitle={Proceedings of the Third International Conference on Web Information Systems and Technologies - Volume 3: WEBIST,},

in EndNote Style

JO - Proceedings of the Third International Conference on Web Information Systems and Technologies - Volume 3: WEBIST,
SN - 978-972-8865-79-5
AU - Pereira A.
AU - Rocha L.
AU - Mourão F.
AU - Torres T.
AU - Meira Jr. W.
AU - Goes P.
PY - 2007
SP - 84
EP - 91
DO - 10.5220/0001267000840091