Paulo Tomé, Ernesto Costa, Luís Amaral


Information Systems Development (ISD) is an important organization activity that generally involves the development of models. This paper describes a framework, supported by Case-Based-Reasoning (CBR) method, that enables the use of experience in model development in the context of ISD process.


  1. Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations and systems approaches. AI-Communications, 7(1):39- 52.
  2. Althoff, K. D., Auriol, E., Barletta, R., and Manago, M. (1995). A review of industrial case-based reasoning tools. Technical report, AI Intelligence.
  3. Althoff, K. D., Nick, M., and Tautz, C. (1999). Cbr-peb: An application implementing reuse concepts of experience factory for the transfer of cbr system knowhow. In 7th German Workshop on Case-Based Reasoning, Wurzburg.
  4. Althoff, K. D. and Weber, R. O. (2005). Knowledge management in case-based reasoning. The Knowledge Engineering Review, 20:305-310.
  5. Baskerville, R., Travis, J., and Truex, D. (1992). Systems without method: The impact of new technologies on information systems development projects. The Impact of Computer Supported Technologies on Information Systems Development, pages 241-270.
  6. Batra, D. and Davis, J. G. (1992). Conceptual data modelling in database design: Similarities and differences between expert and novice designers. International Journal of Man-Machine Studies, 37:83-101.
  7. Chaiyasut, P. and Shanks, G. (1994). Conceptual data modelling process: A study of novice and expert data modellers. In Halpin, T. and Meersman, R., editors, First International Conference on Object-Role Modelling, pages 310-323, Brisbane - Queensland.
  8. Chen, P. P.-S. (1976). The entity-relationship model - toward a unified view of data. ACM Transactions on Database Systems, 1(1):9-36.
  9. Downs, E., Clare, P., and Coe, I. (1992). Structured Systems Analysis and Design Method Application and Context. Prentice Hall, 2l edition.
  10. FIPS (1993). Integration Definition for Information Modeling (IDEF1X). Federal Information Processing Standards Publications.
  11. Fitzgerald, B., Russo, N., and Stolterman, E. (2002). Information Systems Development: Methods in Action. McGraw-Hill.
  12. Gomes, P., Pereira, F. C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J. L., and Bento, C. (2003). Case-based reuse of uml diagrams. In Fifteenth International Conference on Software Engineering and Knowledge Engineering (SEKE'03).
  13. IBM (1984). Business Systems Planning: Information Systems Planning Guide. IBM Cooperation.
  14. Kendall, K. E. and Kendall, J. E. (1992). Systems Analysis And Design. Prentice-Hall.
  15. Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann Publishers.
  16. Krampe, D. and Lusti, M. (1997). Case-based reasoning for information systems design. In ICCBR-97.
  17. Lloyd-Williams, M. (1994a). Expert system support for object-oriented database design. International Journal of Applied Expert Systems, 1(3).
  18. Lloyd-Williams, M. (1994b). Knowledge-based case tools: Improving perfomance using domain-specific knowledge. Software Engineering Journal, July 1994:167- 173.
  19. Mantaras, R. L., Mcsherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A., and Watson, I. (2006). Retrieval, reuse, revison and retention in case-based reasoning. The Knowledge Engineering Review, 20(3):215-240.
  20. Microsoft (2002).
  21. Minsky, M. (1974). A framework for representing knowledge. Technical report, Massachusetts Institute of Technology.
  22. Minsky, M. (1975). A framework for representing knowledge. In Winston, P., editor, The Psychology of Computer Vision, pages 211-277. McGraw-Hill. ISBN 0070710481.
  23. Mntaras, R. L. and Plaza, E. (1997). Case-based reasoning: An overview. AI Comunication, 10(1):21-29.
  24. Rebuilder (2006).
  25. Richter, M. M. (1995). The knowledge contained in similarity measures. ICCBR 95.
  26. Tauzovich, B. (1990). An expert system for conceptual data modelling. In 8th International Conference on the Entity-Relationship Approach, Toronto, Canada.
  27. UML (2006).
  28. Venable, J. R. (1996). Teaching novice conceptual data modellers to become experts. In Software Engineering Education and Pratice, Dunedin. IEEE Computer Society Press.
  29. Wastell, D. G. (1996). The fetish of technique: methodology as a social defense. Information Systems Journal, 6:25-40.
  30. Watson, I. (1996). Case-based reasoning tools: an review. In 2nd UK Workshop on Case-Based Reasoning, pages 71-78, University of Salford. AI-CBR/SGES Publications.
  31. Watson, I. (1997). Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann Publishers.
  32. Watson, I. (1999). Cbr is a methodology not a technology. Knowledge Based Systems Journal, 12(5-6).
  33. Welzer, T., Stiglic, B., Druzovec, M., and Takac, I. (1998). Database reusability in intelligent medical systems. In Intelligent Systems for Humans in a Cyberworld: SM'98, volume 4, pages 4075-4079. IEEE.
  34. Wilhelm, R. and Maurer, D. (1996). Compiler Design. Addison-Wesley.

Paper Citation

in Harvard Style

Tomé P., Costa E. and Amaral L. (2007). RE-USING EXPERIENCE IN INFORMATION SYSTEMS DEVELOPMENT . In Proceedings of the Second International Conference on Software and Data Technologies - Volume 2: ICSOFT, ISBN 978-989-8111-06-7, pages 357-362. DOI: 10.5220/0001343803570362

in Bibtex Style

author={Paulo Tomé and Ernesto Costa and Luís Amaral},
booktitle={Proceedings of the Second International Conference on Software and Data Technologies - Volume 2: ICSOFT,},

in EndNote Style

JO - Proceedings of the Second International Conference on Software and Data Technologies - Volume 2: ICSOFT,
SN - 978-989-8111-06-7
AU - Tomé P.
AU - Costa E.
AU - Amaral L.
PY - 2007
SP - 357
EP - 362
DO - 10.5220/0001343803570362