A PARAMETERIZED GENETIC ALGORITHM IP CORE DESIGN AND IMPLEMENTATION

K. M. Deliparaschos, G. C. Doyamis, S. G. Tzafestas

Abstract

Genetic Algorithm (GA) is a directed random search technique working on a population of solutions and based on natural selection. However, its convergence to the optimum may be very slow for complex optimization problems, especially when the GA is software implemented, making it difficult to be used in real time applications. In this paper a parameterized GA Intellectual Property (IP) core is designed and implemented on hardware, achieving impressive time–speedups when compared to its software version. The parameterization stands for the number of population individuals and their bit resolution, the bit resolution of each individual’s fitness, the number of elite genes in each generation, the crossover and mutation methods, the maximum number of generations, the mutation probability and its bit resolution. The proposed architecture is implemented in a Field Programmable Gate Array Chip (FPGA) with the use of a Very-High-Speed Integrated Circuits Hardware Description Language (VHDL) and advanced synthesis and place and route tools. The GA discussed in this work achieves a frequency rate of 92 MHz and is evaluated using the Traveling Salesman Problem (TSP) as well as several benchmarking functions.

References

  1. Aporntewan, C., Chongstitvatana, P., 2001. A hardware implementation of the Compact Genetic Algorithm. Proceedings of the 2001 Congress on Evolutionary Computation, 1, pp. 624-629.
  2. Deliparaschos, K.M., Nenedakis, F.I., Tzafestas, S.G., 2006. Design and implementation of a fast digital fuzzy logic controller using FPGA technology. Journal of Intelligent and Robotics Systems, 45, pp. 77-96.
  3. Digalakis, J.G., Margaritis, K.G., 2000. An experimental study of benchmarking functions for genetic algorithms. in: 2000 IEEE Int. Conference on Systems, Man, and Cybernetics, 5, pp. 3810-3815.
  4. Gerhard, R., TSP libraries. Department of Computer Sciences, University of Heidelberg. Available from: http://www.iwr.uniheidelberg.de/groups/comopt/softw are/TSPLIB95/
  5. Goldberg, D.E., 1989. Genetic Algorithms in Search Optimization and Machine Learning. Reading, MA: Addison-Wesley.
  6. Holland, J.H., 1975. Adaptation in Natural and Artificial systems: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University of Michigan Press.
  7. Koza, J.R., 1992. Genetic Programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.
  8. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A., 1999. Genetic Programming III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann Publishers.
  9. Lei, T., Zhu M.-C., Wang J.-X., 2002. The hardware implementation of a genetic algorithm model with FPGA. in: 2002 IEEE International Conference on Field-Programmable Technology (FPT), pp. 374-377.
  10. Mitchell, M., 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.
  11. Martel, E., Solving Travelling Salesman Problems using Genetic Algorithms. Available from: http://aidepot.com/Articles/51/TSP.html
  12. Pham, D.T., Karaboga, D., 2000. Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. London, UK: Springer.
  13. Sjoholm, S., Lindh, L., 1997. VHDL for Designers. London, UK: Prentice Hall.
  14. Tang, W., Yip, L., 2004. Hardware implementation of genetic algorithms using FPGA. in: MWSCAS 7804, The 2004 47th Midwest Symposium on Circuits and Systems, 1, pp. 549-552.
  15. Tzafestas, S.G., 1999. Soft Computing in Systems and Control Technology. 18, London, UK: World Scientific.
  16. Xilinx, 2003. Spartan-3 FPGA Family: Complete Data Sheet - DS099. Available from: http://www.xilinx.com/bvdocs/publications/ds099.pdf
  17. Zainalabedin, N., 1998. VHDL: Analysis and Modeling of Digital Systems. NY: Mc Graw-Hill International.
  18. Zhu, Z., Mulvaney, D., Chouliaras, V., 2006. A novel genetic algorithm designed for hardware implementation. Int. Journal of Computational Intelligence, 3, number 4.
  19. Zhang, L., Zhang, B., 2000. Research on the mechanism of genetic algorithms. Journal of Software, 11(7), pp.945-952.
Download


Paper Citation


in Harvard Style

M. Deliparaschos K., C. Doyamis G. and G. Tzafestas S. (2007). A PARAMETERIZED GENETIC ALGORITHM IP CORE DESIGN AND IMPLEMENTATION . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-972-8865-82-5, pages 417-423. DOI: 10.5220/0001616004170423


in Bibtex Style

@conference{icinco07,
author={K. M. Deliparaschos and G. C. Doyamis and S. G. Tzafestas},
title={A PARAMETERIZED GENETIC ALGORITHM IP CORE DESIGN AND IMPLEMENTATION},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2007},
pages={417-423},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001616004170423},
isbn={978-972-8865-82-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A PARAMETERIZED GENETIC ALGORITHM IP CORE DESIGN AND IMPLEMENTATION
SN - 978-972-8865-82-5
AU - M. Deliparaschos K.
AU - C. Doyamis G.
AU - G. Tzafestas S.
PY - 2007
SP - 417
EP - 423
DO - 10.5220/0001616004170423