STATE ESTIMATION OF NONLINEAR DISCRETE-TIME SYSTEMS BASED ON THE DECOUPLED MULTIPLE MODEL APPROACH

Rodolfo Orjuela, Benoît Marx, José Ragot, Didier Maquin

Abstract

Multiple model approach is a powerful tool for modelling nonlinear systems. Two structures of multiple models can be distinguished. The first structure is characterised by decoupled submodels, i.e. with no common state (decoupled multiple model), in opposition to the second one where the submodels share the same state (Takagi-Sugeno multiple model). A wide number of research works investigate the state estimation of nonlinear systems represented by a classic Takagi-Sugeno multiple model. On the other hand, to our knowledge, the state estimation of the decoupled multiple model has not been investigated extensively. This paper deals with the state estimation of nonlinear systems represented by a decoupled multiple model. Conditions for ensuring the convergence of the estimation error are formulated in terms of a set of Linear Matrix Inequalities (LMIs) employing the Lyapunov direct method.

References

  1. Akhenak, A., Chadli, M., Ragot, J., and Maquin, D. (2004). Estimation of state and unknown inputs of a nonlinear system represented by a multiple model. In 11h IFAC Symposium on Automation in Mineral and Metal processing, Nancy, France.
  2. Chadli, M., Maquin, D., and Ragot, J. (2003). Multiple observers for discrete-time multiple models. In Safeprocess, pages 801-806, Washington, D.C., USA.
  3. Chilali, M. and Gahinet, P. (1996). H-infinity design with pole placement constraints: an LMI approach. IEEE Transactions in Automatic and Control, 41(3):358- 367.
  4. De Oliveira, M., Bernussou, J., and Geromel, J. (1999). A new discrete-time robust stability condition. Systems Control Letters,, 37(4):261-265.
  5. Feng, G., Cao, S. G., Rees, N. W., and Chak, C. K. (1997). Design of fuzzy control systems with guaranteed stability. Fuzzy Sets and Systems, 85(1):1-10.
  6. Filev, D. (1991). Fuzzy modeling of complex systems. International Journal of Approximate Reasoning, 5(3):281-290.
  7. Gasso, K., Mourot, G., and Ragot, J. (2001). Structure identification in multiple model representation: elimination and merging of local models. In 40th IEEE Conference on Decision and Control, pages 2992-2997, Orlando, USA.
  8. Gatzke, E. P. and Doyle III, F. J. (1999). Multiple model approach for CSTR control. In 14 IFAC World Congress, pages 343-348, Beijing, P. R. China.
  9. Gawthrop, P. (1995). Continuous-time local state local model networks. In IEEE Conference on Systems, Man & Cybernetics, pages 852-857, Vancouver, Canada.
  10. Gregorcic, G. and Lightbody, G. (2000). Control of highly nonlinear processes using self-tuning control and multiple/local model approaches. In 2000 IEEE International Conference on Intelligent Engineering Systems, INES 2000, pages 167-171.
  11. Guerra, T. M. and Vermeiren, L. (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form. Automatica, 40(5):823-829.
  12. Jadbabaie, A. (1999). A reduction in conservatism in stability and L2 gain analysis of Takagi-Sugeno fuzzy systems via linear matrix inequalites. In 14h IFAC World Congress, pages 285-289, Beijing, P. R. China.
  13. Johansen, T., Shorten, R., and Murray-Smith, R. (2000). On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Trans. on Fuzzy Systems, 8(3):297-313.
  14. Murray-Smith, R. and Johansen, T. (1997). Multiple model approaches to modelling and control. Taylor & Francis.
  15. Palm, R. and Bergstern, P. (2000). Sliding mode observer for a Takagi-Sugeno fuzzy system. In The Ninth IEEE International Conference on Fuzzy Systems, volume 2, pages 665-670, San Antonio.
  16. Rhee, B. and Won, S. (2006). A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design. Fuzzy Sets and Systems, 157(9):1277- 1228.
  17. Tanaka, K. and Sugeno, M. (1990). Stability analysis of fuzzy systems using Lyapunov's direct method. In NAFIPS, pages 133-136, Toronto, Canada.
  18. Venkat, A., Vijaysai, P., and Gudi, R. (2003). Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space. Journal of Process Control, 13(6):473-488.
Download


Paper Citation


in Harvard Style

Orjuela R., Marx B., Ragot J. and Maquin D. (2007). STATE ESTIMATION OF NONLINEAR DISCRETE-TIME SYSTEMS BASED ON THE DECOUPLED MULTIPLE MODEL APPROACH . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-972-8865-84-9, pages 142-148. DOI: 10.5220/0001640101420148


in Bibtex Style

@conference{icinco07,
author={Rodolfo Orjuela and Benoît Marx and José Ragot and Didier Maquin},
title={STATE ESTIMATION OF NONLINEAR DISCRETE-TIME SYSTEMS BASED ON THE DECOUPLED MULTIPLE MODEL APPROACH},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2007},
pages={142-148},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001640101420148},
isbn={978-972-8865-84-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - STATE ESTIMATION OF NONLINEAR DISCRETE-TIME SYSTEMS BASED ON THE DECOUPLED MULTIPLE MODEL APPROACH
SN - 978-972-8865-84-9
AU - Orjuela R.
AU - Marx B.
AU - Ragot J.
AU - Maquin D.
PY - 2007
SP - 142
EP - 148
DO - 10.5220/0001640101420148