TRACKING CONTROL DESIGN FOR A CLASS OF AFFINE MIMO TAKAGI-SUGENO MODELS

Carlos Ariño, Antonio Sala, Jose Luis Navarro

Abstract

When controlling Takagi-Sugeno fuzzy systems, verification of some sector conditions is usually assumed. However, setpoint changes may alter the sector bounds. Alternatively, setpoint changes may be considered as an offset addition in many cases, and hence affine Takagi-Sugeno models may be better suited to this problem. This work discusses a nonconstant change of variable in order to carry out offset-ellimination in a class of MIMO canonical affine Takagi-Sugeno models. Once the offset is cancelled, standard fuzzy control design techniques can be applied for arbitrary setpoints. The canonical models studied use as state representation a set of basic variables and their derivatives. Some examples are included to illustrate the procedure.

References

  1. Antsaklis Panos, J. and Michel Anthony, N. (1997). Linear Systems. Ed. McGraw-Hill, New York, USA.
  2. Babuska, R. (1998). Fuzzy Modeling for Control. Ed. Kluwer Academic, Boston, USA.
  3. Boyd, S., ElGhaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Ed. SIAM, Philadelphia, USA.
  4. Guerra, T. and Vermeiren, L. (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form. Automatica, 40:823-829.
  5. Johansson, M. (1999). Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst., 7:713-722.
  6. Kim, E. and Kim, S. (2002). Stabiliy analysis and synthesis for affine fuzzy control system via LMI and ILMI: Continous case. IEEE Transactions on Fuzzy Systems, 10:391-400.
  7. Nelles, O., Fink, A., and Isermann, R. (2000). Local linear model trees (lolimot) toolbox for nonlinear system identification. In Proc. 12th IFAC Symposium on System Identification. Elsevier.
  8. Sala, A., Guerra, T., and Babuska, R. (2005). Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, page In Print.
  9. Slotine, J.-J. E. and Li, W. (1991). Applied Nonlinear Control. Ed. Prentice Hall, Englewood Cliffs,New Jersey.
  10. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on System, Man and Cybernetics, 15:116-132.
  11. Tanaka, K. and Wang, H. O. (2001). Fuzzy control systems design and analysis. Ed. John Wiley & Sons, New York, USA.
Download


Paper Citation


in Harvard Style

Ariño C., Sala A. and Luis Navarro J. (2007). TRACKING CONTROL DESIGN FOR A CLASS OF AFFINE MIMO TAKAGI-SUGENO MODELS . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-972-8865-82-5, pages 248-255. DOI: 10.5220/0001640702480255


in Bibtex Style

@conference{icinco07,
author={Carlos Ariño and Antonio Sala and Jose Luis Navarro},
title={TRACKING CONTROL DESIGN FOR A CLASS OF AFFINE MIMO TAKAGI-SUGENO MODELS},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2007},
pages={248-255},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001640702480255},
isbn={978-972-8865-82-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - TRACKING CONTROL DESIGN FOR A CLASS OF AFFINE MIMO TAKAGI-SUGENO MODELS
SN - 978-972-8865-82-5
AU - Ariño C.
AU - Sala A.
AU - Luis Navarro J.
PY - 2007
SP - 248
EP - 255
DO - 10.5220/0001640702480255