ADAPTIVE DOCUMENT BINARIZATION - A Human Vision Approach

Vassilios Vonikakis, Ioannis Andreadis, Nikolaos Papamarkos, Antonios Gasteratos

Abstract

This paper presents a new approach to adaptive document binarization, inspired by the attributes of the Human Visual System (HVS). The proposed algorithm combines the characteristics of the OFF ganglion cells of the HVS with the classic Otsu binarization technique. Ganglion cells with four receptive field sizes tuned to different spatial frequencies are employed, which, adopting a new activation function, are independent of gradual illumination changes, such as shadows. The Otsu technique is then used for thresholding the outputs of the ganglion cells, resulting to the final segmentation of the characters from the background. The proposed method was quantitatively and qualitatively tested against other contemporary adaptive binarization techniques in various shadow levels and noise densities, and it was found to outperform them.

References

  1. Chichilnisky, E., J., Kalmar, R., S., 2002. Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina. The Journal of Neuroscience, 22, (7), pp. 2737-2747.
  2. Ellias, S., Grossberg, S,. 1975. Pattern Formation, Contrast Control and Oscillations in the Short Term Memory of Shunting On-Center Off-Surround Networks. Biological Cybernetics, 20, pp. 69-98.
  3. Fiorentini, A., 2004. Brightness and Lightness, The Visual Neurosciences, MIT Press, 2, pp. 881-891.
  4. Martin, P., Grunert, U., 2004. Ganglion cells in mammalian retinae. In The Visual Neurosciences, MIT Press, 1, pp. 410-421.
  5. Niblack, W., 1986. An Introduction to Digital Image Processing, Englewood Cliffs, N.J. Prentice Hall, pp.115-116.
  6. Otsu, N., 1979. A thresholding selection method from grey-level histogram. IEEE Trans. Systems Man Cybernet, SMC-8, pp. 62-66.
  7. Papamarkos, N., 2003. Document Gray-Scale Reduction Using a Neuro-Fuzzy Technique. International Journal of Pattern Recognition and Artificial Intelligence, 17, pp. 505-527.
  8. Papamarkos, N., Gatos, B., 1994. A new approach for multithreshold selection. Computer Vision, Graphics, and Image Processing-Graphical Models and Image Processing, 56, (5), pp. 357-370.
  9. Sauvola, J., Pietikainen, M., 2000. Adaptive Document Image Binarization. Pattern Recognition, 33, pp. 225- 236.
Download


Paper Citation


in Harvard Style

Vonikakis V., Andreadis I., Papamarkos N. and Gasteratos A. (2007). ADAPTIVE DOCUMENT BINARIZATION - A Human Vision Approach . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 978-972-8865-74-0, pages 104-109. DOI: 10.5220/0002047001040109


in Bibtex Style

@conference{visapp07,
author={Vassilios Vonikakis and Ioannis Andreadis and Nikolaos Papamarkos and Antonios Gasteratos},
title={ADAPTIVE DOCUMENT BINARIZATION - A Human Vision Approach},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2007},
pages={104-109},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002047001040109},
isbn={978-972-8865-74-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - ADAPTIVE DOCUMENT BINARIZATION - A Human Vision Approach
SN - 978-972-8865-74-0
AU - Vonikakis V.
AU - Andreadis I.
AU - Papamarkos N.
AU - Gasteratos A.
PY - 2007
SP - 104
EP - 109
DO - 10.5220/0002047001040109