INFORMATION FUSION TECHNIQUES FOR AUTOMATIC IMAGE ANNOTATION

Filippo Vella, Chin-Hui Lee

Abstract

Many recent techniques in Automatic Image Annotation use a description of image content based on visual symbolic elements associating textual labels through symbolic connection techniques. These symbolic visual elements, called visual terms, are obtained by a tokenization process starting from the values of features extracted from the training images data set. An interesting issue for this approach is to exploit, through information fusion, the representations with visual terms derived by different image features. We show techniques for the integration of visual information from different image features and compare the results achieved by them.

References

  1. Barnard K., Duygulu P., Forsyth D., de Freitas N., Blei D., Jordan. M., 2003, “Matching words and pictures”, Journal of Machine Learning Research, Vol.3, pp 1107-1135.
  2. Bellegarda J.-R., 2000, “Exploiting latent semantic information in statistical language modelling”, Proc. of the IEEE, Vol. 88, No. 8, pp 1279-1296.
  3. Blei D., Jordan M.-I., 2003, “Modeling annotated data”, ACM SIGIR.
  4. Carbonetto P., de Freitas N., Barnard K., 2004, “A statistical model for general contextual object recognition”, Proc. of ECCV.
  5. Duygulu P., de Freitas N., Barnard K., Forsyth D., 2002, “Object recognition as machine translation: Learning a lexicon for a fixed vocabulary”, Proc. of ECCV.
  6. Feng S.-L., Manmatha R., Lavrenko V., 2004, “Multiple Bernoulli relevance models for image and video annotation,” , Proc of CVPR'04.
  7. Gao S., Wang D.-H., Lee C.-H., 2006, “Automatic Image Annotation through Multi-Topic Text Categorization”, Proc. of ICASSP.
  8. Gao S., Wu W., Lee C.-H., Chua T.-S. , 2004, “A MFoM learning approach to robust multiclass multi-label text categorization”, Proc. of ICML.
  9. He X.-M., Zemel R. S., Carreira-Perpiñán M. A., 2004, “Multiscale conditional random fields for automatic image annotation”, Proc. of CVPR
  10. Jeon J., Manmatha R., 2004., “Using maximum entropy for automatic image annotation”, Proc of ICVR.
  11. Jeon J., Manmatha R., 2003, “Automatic image annotation and retrieval using cross-media relevance models”, ACM SIGIR.
  12. Landgrebe T.C.W., Paclik P., Duin R.P.W., Bradley A.P., 2006, "Precision-recall operating characteristic (PROC) curves in imprecise environments", Proc. of the 18th Int. Conf. on Pattern Recognition
  13. Linde Y., Buzo A., Gray R., 1980. “An Algorithm for Vector Quantizer Design”. IEEE Transaction on Communications, vol. 28 (1), pp 84-94.
  14. Mitchell T.M., 1997, Machine Learning, McGrawHill
  15. Mori Y, Takahashi H., Oka R., 1999, Image-to-word transformation based on dividing and vector quantizing images with words, In Proc of MISRM'99
  16. Quinlan J.R., 2006, Data Mining Tools See5 and C5.0, from Rule Quest web site: www.rulequest.com/ see5- info.html
  17. Salton G., 1971, The SMART Retrieval System, PrenticeHall, Englewood Cliffs, NJ
  18. Sebastiani F., 2002, “Machine Learning in Automated Text Categorization”, ACM Computer Surveys, Vol. 34, No. 1, pp 1-47.
  19. Wang D.-H, Gao S., Tian Q., Sung W.-K, 2005, “Discriminative fusion approach for automatic image annotation”, Proc. of IEEE 7th Workshop on Multimedia Signal Processing
Download


Paper Citation


in Harvard Style

Vella F. and Lee C. (2007). INFORMATION FUSION TECHNIQUES FOR AUTOMATIC IMAGE ANNOTATION . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 978-972-8865-74-0, pages 60-67. DOI: 10.5220/0002053800600067


in Bibtex Style

@conference{visapp07,
author={Filippo Vella and Chin-Hui Lee},
title={INFORMATION FUSION TECHNIQUES FOR AUTOMATIC IMAGE ANNOTATION},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2007},
pages={60-67},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002053800600067},
isbn={978-972-8865-74-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - INFORMATION FUSION TECHNIQUES FOR AUTOMATIC IMAGE ANNOTATION
SN - 978-972-8865-74-0
AU - Vella F.
AU - Lee C.
PY - 2007
SP - 60
EP - 67
DO - 10.5220/0002053800600067