AUTOMATED COMBINED TECHNIQUE FOR SEGMENTING CYTOLOGICAL SPECIMEN IMAGES

D. M. Murashov

Abstract

Automated snake-based combined technique for segmenting cytological images is proposed. The main features of the technique are: implementation of the wave propagation model and modified Gaussian filter based on the heat equation with heat source, availability of coarse and precise levels of contour approximation, automated snake initiation. The technique is successfully implemented for segmenting cytological specimen images.

References

  1. Borst, H., Abmayr, W., and Gais, P., 1979. A thresholding method for automatic cell image segmentation, J. Histochem. Cytochem.,27(1), pp 180-187.
  2. Belyaev, A.G., Pasko, A.A., KuniiT.L., 1998. Ridges and Ravines on Implicit Surfaces. Computer Graphics International (CGI 7898), June 22-24, Hannover, Germany, pp. 530-535.
  3. Bengtsson, E., Wahlby, C., Lindblad, J., 2004. Robust Sell Image Segmentation Methods. Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. Vol.14, No. 2, pp. 157 - 167.
  4. Caselles, V., Catte, F., Coll, T., Dibos, F. 1993. A geometric model for active contours. Numerische Mathematik 66, pp. 1-31.
  5. Comaniciu, D., Meer, P., 2001. Cell Image Segmentation for Diagnostic Pathology, Advanced Algorithmic Approaches to Medical Image Segmentation: State-OfThe-Art Applications in Cardiology, Neurology, Mammography and Pathology . J. Suri, S. Singh and K. Setarehdan (Eds.), Springer, pp. 541-558.
  6. Colantonio S., Gurevich I.B. Salvetti O., 2006. Automatic Fuzzy-Neural Based Segmentation of Microscopic Cell Images, In Workshop Proceedings: Petra Perner (Ed.), Workshop on Mass-Data Analysis of Images and Signals, MDA 2006 IBaI CD-Report, p. 34-45.
  7. Eberly, D., Gardner, R., Morse, B., Pizer, S., and Scharlach, C., 1994. Ridges for image analysis, Journal of Mathematical Imaging and Vision, 4, 4, December, pp. 353 - 373.
  8. Haralick, R. M., Shapiro, L. G., 1985. Image Segmentation Techniques, Computer Vision, Graphics, and Image Processing, 29, 1, pp. 100-132.
  9. Kass, M., Witkin, A., Terzopoulos, D. 1987. Snakes: Active contour models. Int. Journal on Computer Vision, 1, pp. 321-331.
  10. Koederink, J., 1984. The structure of images. Bio. Cybern., 50, pp.363 - 370.
  11. Klemencic, A., Kovacic, S., Pernus, F., 1998. Automated segmentation of muscul fiber images using active contour models, Cytometry 32, pp. 317-326.
  12. Soille, P., 2004. Morphological Image Analysis: Principles and Applications, Springer-Verlag, Berlin.
  13. Lindeberg, T., 1994. Scale-space Theory in Computer Vision. Kluwer Academic Publishers.
  14. Lee, E.B., Markus, L., 1971. Foundations of optimal control theory, J. Willey & Sons, Inc., New York, London, Sydney.
  15. Leymarie, F., 1990. Tracking and Describing Deformable Objects Using Active Contour Models. Technical Report CIM-90-9, McGill Research Center for Intelligent Machines, 186 p.
  16. Malpica, N., Ortiz de Solorzano, C., Vaquero, J.J., et. al., 1997. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 28, pp. 289-297.
  17. Ortiz de Solorzano, C., Malladi, R., Lelievre, S.A., Lockett,S.J., 2001. Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy, 201, pp. 404-415.
  18. Rohr, K., 2001. Landmark-Based Image Analysis Using Geometric and Intensity Models, Kluwer Academic Publishers, 303 p.
  19. Pratt, W.K. 2001. Digital Image Processing: PIKS Inside, John Wiley & Sons, Inc., 735 p.
  20. Sapiro, G., 2001. Geometric Partial Differential Equations and Image Analysis.Cambridge University Press, Cambridge.
  21. Xu, C., Prince, J.L., 1998. Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions On Image Processing, 7 (3), pp.359-369.
  22. Yang, L. Meer, P., Foran, D., 2005. Unsupervised segmentation based on robust estimation and color active contour models, IEEE Trans. on Information Technology in Biomedicine, 9, pp. 475-486.
Download


Paper Citation


in Harvard Style

M. Murashov D. (2007). AUTOMATED COMBINED TECHNIQUE FOR SEGMENTING CYTOLOGICAL SPECIMEN IMAGES . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Mathematical and Linguistic Techniques for Image Mining, (VISAPP 2007) ISBN 978-972-8865-75-7, pages 238-245. DOI: 10.5220/0002071402380245


in Bibtex Style

@conference{mathematical and linguistic techniques for image mining07,
author={D. M. Murashov},
title={AUTOMATED COMBINED TECHNIQUE FOR SEGMENTING CYTOLOGICAL SPECIMEN IMAGES},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Mathematical and Linguistic Techniques for Image Mining, (VISAPP 2007)},
year={2007},
pages={238-245},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002071402380245},
isbn={978-972-8865-75-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Mathematical and Linguistic Techniques for Image Mining, (VISAPP 2007)
TI - AUTOMATED COMBINED TECHNIQUE FOR SEGMENTING CYTOLOGICAL SPECIMEN IMAGES
SN - 978-972-8865-75-7
AU - M. Murashov D.
PY - 2007
SP - 238
EP - 245
DO - 10.5220/0002071402380245