REALISTIC TRANSMISSION MODEL OF ROUGH SURFACES

Huiying Xu, Yinlong Sun

Abstract

Transparent and translucent objects involve both light reflection and transmission at surfaces. This paper develops a realistic transmission model of rough surfaces using the statistical ray method, which is a physically based approach that has been developed recently. The surface is assumed locally smooth and statistical techniques can be applied to calculate light transmission through a local illumination area. We have obtained an analytical expression for single scattering. The analytical model has been compared to our Monte Carlo simulations as well as to the simulations by others, and good agreements have been achieved. The presented model has a potential for realistic rendering of transparent and translucent objects.

References

  1. Ashikhmin, M., Premoze, S., Shirley, P., 2000. A microfacet-based BRDF generator. In Proc. of ACM SIGGRAPH, pp. 65-74.
  2. Beckmann, P., Spizzichino, A., 1963. The Scattering of Electromagnetic Waves from Rough Surfaces, Macmillan, New York.
  3. Blinn, J. F., 1977. Models of light reflection for computer synthesized pictures. In Proc. Siggraph, pp. 192-198.
  4. Cook, R. L., Torrance, K. E., 1982. A reflection model for Computer Graphics. ACM Transactions on Graphics, vol. 1, no. 1, pp. 7-24.
  5. Dorsey, J., Edelman A., Jensen H. W., Legakis J., and Pedersen H. K., 1999. Modeling and rendering of weathered stone. In Proc. Siggraph 7899, pp. 225-234.
  6. Fung, A. K., Chen, M. F., 1985. Numerical simulation of scattering from simple and composite random surfaces. J. Opt. Soc. Am. A, vol. 2, no. 12, pp. 2274- 2284.
  7. Glassner, A. S., 1995. Principles of Digital Image Synthesis, Morgan Kaufmann Publishers, San Francisco, CA.
  8. Hanrahan, P., and Krueger W., 1993. Reflection from layered surface due to subsurface scattering. In Proc. Siggraph 7893, pp. 165-174.
  9. He, X. D., 1993. Physically-based models for the reflection, transmission and subsurface scattering of light by smooth and rough surfaces, with applications to realistic image synthesis. Ph.D thesis, Cornell University, Ithaca, New York.
  10. He, X. D., Torrance, K. E., Sillion, F. X., Greenberg, D. P., 1991. A comprehensive physical model for light reflection. In Proc. Siggraph, pp. 175-186.
  11. Jensen, H. W., and Christensen P. H., 1998. Efficient Simulation of Light Transport in Scenes with Participating Media Using Photon Maps. Computer Graphics Proceedings (Proc. SIGGRAPH 7898), pp. 311-320.
  12. Jensen H. W., Marschner S. R., Levoy M., and Hanrahan P., 2001. A practical model for subsurface light transport. In Proc. Siggraph 7801, pp. 511-518.
  13. Jensen H. W., and Buhler J., 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21, vol. 3, pp. 576-581.
  14. Koenderink J., and Doorn A. van., 2001. Shading in the case of translucent objects. In Proc. SPIE, vol. 4299, pp. 312-320.
  15. Kubelka, P., and Munk, F., 1931. Ein Beitrag Zur Optik Der Farbanstriche, Zeitschrift fr Technishen Physik, p. 593.
  16. Lafortune, E. P. F., Foo, Sing-Choong, Torrance, K. E., Greenberg, D. P., 1997. Non-linear approximation of reflectance functions. In Proc. Siggraph, pp. 117-126.
  17. Mertens, T., Kautz, J., Bekaert, P., Reeth, F. V., and Seidel, H. -P., 2005. Efficient rendering of local surface scattering. In Computer Graphics Forum, vol. 24, pp. 41-49.
  18. Nieto-Vesperinas, M., Sanchez-Gil, J. A., Sant, A. J., Dainty, J. C., 1990. Light transmission from a randomly rough dielectric diffuser: theoretical and experimental results. Opt. Lett., vol. 18, no. 22, pp. 1261-1263.
  19. Pharr, M., and Hanrahan, P., 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. Siggraph 7800, pp. 75-84.
  20. Phong, B., 1975. Illumination for computer generated images. Comm. of ACM, vol. 18, no. 6, pp. 311-317.
  21. Stam, J., 2001. An illumination model for a skin layer bounded by rough surfaces. In Proceedings the 21th Eurographics Workshop on Rendering Techniques, pp. 39-52.
  22. Sun, Y., 2007. Analytical framework for calculating BRDFs of randomly rough surfaces. J. Opt. Soc. Am. A, (to appear in March 2007). Currently available online at http://josaa.osa.org/upcoming.cfm.
  23. Torrance, K. Sparrow, E. M., 1967. Theory for offspecular reflection from roughened surfaces. J. Opt. Soc. Am., vol. 57, no. 9, pp. 1105-1114.
  24. Ward, G. J., 1992. Measuring and modeling anisotropic reflection. In Proc. SIGGRAPH, pp. 265-272.
  25. Wang, R., Tran, J., and Luebke, D., 2005. All-Frequency Interactive Relighting of Translucent Objects with Single and Multiple Scattering, in ACM Trans. Graphics (Proc. SIGGRAPH 7805), pp. 1202-1207.
Download


Paper Citation


in Harvard Style

Xu H. and Sun Y. (2007). REALISTIC TRANSMISSION MODEL OF ROUGH SURFACES . In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, ISBN 978-972-8865-71-9, pages 77-84. DOI: 10.5220/0002082600770084


in Bibtex Style

@conference{grapp07,
author={Huiying Xu and Yinlong Sun},
title={REALISTIC TRANSMISSION MODEL OF ROUGH SURFACES},
booktitle={Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,},
year={2007},
pages={77-84},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002082600770084},
isbn={978-972-8865-71-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,
TI - REALISTIC TRANSMISSION MODEL OF ROUGH SURFACES
SN - 978-972-8865-71-9
AU - Xu H.
AU - Sun Y.
PY - 2007
SP - 77
EP - 84
DO - 10.5220/0002082600770084