FACILITATING E-BUSINESS BY RETRIEVING RELEVANT BUSINESS OPPORTUNITIES ON THE INTERNET

Jing Bai, Jian-Yun Nie, François Paradis

Abstract

The Web is a useful medium that contains more and more business opportunities. However, it is often difficult to identify relevant ones using generic search engines. In this paper, we describe a system MBOI dedicated to the matching of business opportunities on the Web. It collects automatically calls for tenders, analyzes and classifies them. User profiles are automatically constructed to help document retrieval. Query translation is also provided in order to allow users to find calls for tenders written in a different language.

References

  1. Aggarwal, C.C., Al-Garawi, F. and Yu. P.S. Intelligent crawling on the world wide web with arbitrary predicates. WWW Conference, 2001.
  2. Bai, J., Nie, J., Cao, G., Using query contexts in information retrieval, Proc. SIGIR, 2007, to appear.
  3. Betts, M. The future of business intelligence. Computer World, 14 April 2003.
  4. Brown, P.F., Pietra, S.A.D., Pietra, V.D.J. and Mercer, R.L. The mathematics of machine translation: Parameter estimation. Computational Linguistics, 19: 263-312, 1992.
  5. Cai, L. and Hofmann, T. Text categorization by boosting automatically extracted concepts. Proceedings of SIGIR, pp.182.189, 2003.
  6. Chau, M., Zeng, D., Chen, H., Huang, M. and Hendriawan, D. Design and evaluation of a multi agent collaborative web mining system. Decision Support Systems, 35(1):167.183, 2003.
  7. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V. GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. ACL, 2002.
  8. Jason, D. M., Rennie, Lawrence, Shih, J. T., & Karger, D. R. Tackling the poor assumptions of Naive Bayes text classifiers. ICML, 2003.
  9. Maynard, D., Tablan, V., Ursu, C., Cunningham, H., and Wilks, Y. Named entity recognition from diverse text types. Recent Advances in Natural Language Processing, pages 257.274, 2001.
  10. McCallum, A. K. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering, 1996. http://www.cs.cmu.edu/.mccallum/bow, Peters, C.. Braschler. M., Gonzalo, J. and Kluck. M., editors. Advances in Cross-Language Information Retrieval Systems. Springer, 2003.
  11. Ponte, J. and Croft, W.B., A language modeling approach to information retrieval. Proceedings of SIGIR, pp. 275-281, 1998.
  12. Soderland. S. Learning information extraction rules for semi-structured and free text. Machine Learning, 44(1), 1999.
  13. Yang, Y. An evaluation of statistical approaches to text categorization. Journal of Information Retrieval, 1(1/2):67.88, 1999.
  14. Zhai, C, and Lafferty, J., A Study of Smoothing Methods for Language Models Applied to Information Retrieval. Proc. SIGIR, pp. 334-342, 2001.
Download


Paper Citation


in Harvard Style

Bai J., Nie J. and Paradis F. (2007). FACILITATING E-BUSINESS BY RETRIEVING RELEVANT BUSINESS OPPORTUNITIES ON THE INTERNET . In Proceedings of the Second International Conference on e-Business - Volume 1: ICE-B, (ICETE 2007) ISBN 978-989-8111-11-1, pages 174-179. DOI: 10.5220/0002115101740179


in Bibtex Style

@conference{ice-b07,
author={Jing Bai and Jian-Yun Nie and François Paradis},
title={FACILITATING E-BUSINESS BY RETRIEVING RELEVANT BUSINESS OPPORTUNITIES ON THE INTERNET},
booktitle={Proceedings of the Second International Conference on e-Business - Volume 1: ICE-B, (ICETE 2007)},
year={2007},
pages={174-179},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002115101740179},
isbn={978-989-8111-11-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on e-Business - Volume 1: ICE-B, (ICETE 2007)
TI - FACILITATING E-BUSINESS BY RETRIEVING RELEVANT BUSINESS OPPORTUNITIES ON THE INTERNET
SN - 978-989-8111-11-1
AU - Bai J.
AU - Nie J.
AU - Paradis F.
PY - 2007
SP - 174
EP - 179
DO - 10.5220/0002115101740179