Georg Peters, Roger Tagg


After a bumpy start in the nineties of the last century workflow systems have recently re-gained the focus of attention. Today they are considered as a crucial part of the recently introduced middleware based ERP systems. One of the central objectives and hopes for this technology is to make companies more process-orientated and flexible to keep up with the increasing speed of change of a global economy. This requires sophisticated instruments to optimally manage workflow systems, e.g. to deal with incomplete information effectively. In this paper we investigate the potential of rough set theory to make missing or incomplete information visible in workflow systems.


  1. Bargiela, A. & Pedrycz, W. (2002), Granular Computing: An Introduction, Kluwer Acamemic Publishers, Boston, MA, USA.
  2. Dubois, D. & Prade, H. (1990), 'Rough Fuzzy Sets and Fuzzy Rough Sets', International Journal of General Systems 17, 191-209.
  3. Fowler, F. (2003), UML Distilled: A Brief Guide to the Standard Object Modeling Language, AddisonWesley Professional, Boston, MA, USA.
  4. Grzymala-Busse, J. (2004), Introduction to Rough Set Theory and Applications, in 'KES2004 - 8th International Conference on Knowledge-Based Intelligent Information & Engineering Systems'.
  5. Hoffmann, F.; Koeppen, M.; Klawonn, F. & Roy, R., ed. (2005), Soft Computing: Methodologies and Applications, Vol. 32, Springer Verlag, Berlin, Germany.
  6. Komorowski, J.; Pawlak, Z.; Polkowski, L. & Skowron, A. (1999), Rough Sets: A Tutorial, in S. K. Pal & A. Skowron, ed., 'Rough-Fuzzy Hybridization: A New Trend in Decision Making', Springer-Verlag, Singapore, 3-98.
  7. Lingras, P. & West, C. (2004), 'Interval Set Clustering of Web Users with Rough K-Means', Journal of Intelligent Information Systems 23, 5-16.
  8. Mitra, S. (2004), 'An Evolutionary Rough Partitive Clustering', Pattern Recognition Letters 25, 1439- 1449.
  9. Murata, T. (1989), 'Petri Nets: Properties, Analysis and Applications', Proceedings of the IEEE 77(4), 541- 580.
  10. O'Hagan, T. (2005), Chameleon Workflow Demos, University of Queensland website,
  11. Pawlak, Z. (1982), 'Rough Sets', International Journal of Information and Computer Sciences 11, 145-172.
  12. Pawlak, Z. (1992), Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston, MA, USA.
  13. Peters, G. (2006), 'Some Comments on Rough Clustering', Pattern Recognition 39(8), 1481-1491.
  14. Peters, J.F.; Skowron, A.; Suraj, Z. & Ramanna, S. (1999), Guarded transitions in rough Petri nets, in 'Proceed. EUFIT99 - 7th European Congress on Intelligent Systems & Soft Computing'.
  15. Peters, J.F.; Skowron, A.; Suraj, Z.; Ramanna, S. & Paryzek, A. (1998), Modeling real-time decisionmaking systems with rough fuzzy Petri nets, in 'Proceed. EUFIT98 - 6th European Congress on Intelligent Techniques & Soft Computing', pp. 985- 989.
  16. Peters, J.F.; Ramanna, S.; Suraj, Z. & Borkowski, M. (2003), Rough Neurons: Petri Net Models and Applications., in A. Skowron S.K. Pal, L. Polkowski, ed.,78 Rough-Neuro Computing', 472-491.
  17. Peters, J.F.; Skowron, A.; Suray, Z. & Ramanna, S. (2000), Sensor and Filter Models with Rough Petri Nets, in H.D. Burkhard; L. Czaja; A. Skowron & P. Starke, ed., 'Proceedings of the Workhop on Concurrency, Specification and Programming', Humboldt-University, Berlin, 203-211.
  18. Polkowski, L.; Skowron, A. & Komorowski, J. (1996), Approximate case-based reasoning: A rough mereological approach, in 'Proceed. 4-th German Workshop on Case Based Reasoning, System Developments and Evaluation', pp. 144-151.
  19. Polkowski, L. (2003), Rough Sets, Physica-Verlag, Heidelberg, Germany.
  20. Scheer, A. (2000), ARIS - Business Process Modeling, Springer-Verlag, Berlin, Germany.
  21. Skowron, A. & Swiniarski, R. (2001), Rough Sets in Pattern Recognition, in Pal, S.K. and Pal, A., Pattern Recognition: From Classical to Modern Approaches, World Scientific, Singapore, pp. 385-425.
  22. Slowinski, R. (1993), Rough set learning of preferential attitude in multi-criteria decision making, in J. Komorowski & Z. Ras, ed., 'Methodologies for Intelligent Systems', Springer-Verlag, Berlin, Germany, pp. 642-651.
  23. Suraj, Z. (2000), Rough set methods for the synthesis and analysis of concurrent processes, in Polkowski, L. and Tsumoto, S. and Lin, T., Rough set methods and applications: new developments in knowledge discovery in information systems, Physica-Verlag, Heidelberg, Germany, pp. 379-488.
  24. van der Aalst, W. & van Hee, K. (2002), Workflow Management - Models, Methods, and Systems, MIT Press, Cambridge, MA, USA.
  25. van der Aalst, W. (1999), 'Formalization and Verification of Event-driven Process Chains', Information and Software Technology 41(10), 639-650.
  26. van Hee, K.; Oanea, O. & Sidorova, N. (2005), Colored Petri Nets to Verify Extended Event-Driven Process Chains, in 78 Proceed. CoopIS 2005 - 13th International Conference on Cooperative Information Systems', pp. 183-201.
  27. Yao, Y.; Li, X.; Lin, T. & Liu, Q. (1994), Representation and Classification of Rough Set Models, in 'Proceedings Third International Workshop on Rough Sets and Soft Computing', pp. 630-637.
  28. Zadeh, L. (1965), 'Fuzzy Sets', Information and Control 8, 338-353.
  29. Zimmermann, H. (2001), Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston, MA, USA.

Paper Citation

in Harvard Style

Peters G. and Tagg R. (2007). MAKING INCOMPLETE INFORMATION VISIBLE IN WORKFLOW SYSTEMS . In Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 3: ICEIS, ISBN 978-972-8865-90-0, pages 434-440. DOI: 10.5220/0002361804340440

in Bibtex Style

author={Georg Peters and Roger Tagg},
booktitle={Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 3: ICEIS,},

in EndNote Style

JO - Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 3: ICEIS,
SN - 978-972-8865-90-0
AU - Peters G.
AU - Tagg R.
PY - 2007
SP - 434
EP - 440
DO - 10.5220/0002361804340440