DATA MINING CLUSTERING TECHNIQUES IN ACADEMIA

Vasile Paul Breşfelean, Mihaela Breşfelean, Nicolae Ghişoiu, Călin-Adrian Comes

Abstract

In the present paper the authors exemplify the connections among the undergraduate studies, continuing education and professional enhancement on the foundations required by Romania’s integration in EU’s structures. The study was directed to the senior undergraduate students and master degree students from the Faculty of Economics and Business Administration, Babeş-Bolyai University of Cluj-Napoca, using questionnaires in a collaborative approach, and processing the collected data by data mining clustering techniques, graphical and percentage representations, through Weka’s implemented algorithms.

References

  1. Angelini, L., Nitti, L., Pellicoro, M., Stramaglia, S., 2001. Cost functions for pairwise data clustering. Physics Letters A 285, 279-285, 2001
  2. Bação, F., Lobo, V., Painho, M., 2004. Clustering census data: Comparing the performance of self-organising maps and k-means algorithms. KDNet Symposium, Knowledge-based Services for the Public Sector, Bonn, Germany, June 2004
  3. Bresfelean, V.P., 2006. Development Strategies for The Universities' Management Using Information And Communication Technologies, InfoBUSINESS'2006 International Conference, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania, 2006
  4. Bresfelean, V.P., Bresfelean, M., Ghisoiu, N., Comes, C.A., 2006. Continuing education in a future EU member, analysis and correlations using clustering techniques, Proceedings of EDU 7806 International Conference, Tenerife, Spain, December 2006, 195-200
  5. Ghisoiu, N., Bresfelean, V.P., Faur,G., Veres, O., 2006. Collaborative Software Systems, The 3rd international Workshop IE&SI, Timisoara, Editura Mirton, 2006
  6. Grira, N., Crucianu, M., Boujemaa, N., 2005. Unsupervised and Semi-supervised Clustering: a Brief Survey. Review of Machine Learning Techniques for Processing Multimedia Content, Report of the MUSCLE European Network of Excellence (6th Framework Programme). August 15, 2005
  7. Hinneburg, A., Keim, D. A., 2000. Clustering Techniques for Large Data Sets, From the Past to the Future. University of Halle, PKDD 2000
  8. Hung, M. C., Wu, J., Chang, J.H., Yang, D. L., 2005. An Efficient K-Means Clustering Algorithm Using Simple Partitioning. Journal of Information Science and Engineering 21, 1157-1177, 2005
  9. Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review, ACM Computing Surveys 31, 1999
  10. Jung, Y., Park, H., Du, D.Z., Drake, B., 2003. A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering, Journal of Global Optimization 25: 91-111, Kluwer Academic Publishers 2003
  11. Koren, Y., Harel, D., 2003. A Two-Way Visualization Method for Clustered Data. KDD'03 Washington, DC, USA, ACM 2003
  12. Lee, C.-Y., Antonsson, E.K., 2000. Dynamic Partitional Clustering Using Evolution Strategies, Proceedings of the Third Asia Pacific Conference on Simulated Evolution and Learning, IEEE, New York, 2000
  13. Lipai, A., 2003. Finding Costumer Profile using Data Mining, The Sixth International Conference On Economic Informatics, Academy of Economic Studies, Bucharest, Romania, May 8-11, 2003
  14. Maulik, U., Bandyopadhyay, S., 2002. Performance Evaluation of Some Clustering Algorithms and Validity Indices, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 12, December 2002
  15. MacQueen, J., 1967. Some methods for classification and analysis of multivariate observation. 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967: University of California Press.
  16. San, O. M., Huynh, V. N., Nakamori, Y., 2004. An Alternative Extension of The K-Means Algorithm for Clustering Categorical Data. Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, 241-247, 2004
  17. Universitatea Babes-Bolyai Cluj-Napoca, România, UBB 2003. Plan Strategic de dezvoltare a Universitatii Babes-Bolyai 2004-2007, Cluj-Napoca 2003
  18. Witten, I. H., Frank, E., 2005. Data mining : practical machine learning tools and techniques, 2nd ed., Morgan Kaufmann series, Elsevier Inc., 2005
  19. Zhao, Y., Karypis, G., 2005. Data Clustering in Life Sciences. Molecular Biotechnology, Volume 31, Humana Press Inc., 2005
Download


Paper Citation


in Harvard Style

Paul Breşfelean V., Breşfelean M., Ghişoiu N. and Comes C. (2007). DATA MINING CLUSTERING TECHNIQUES IN ACADEMIA . In Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-972-8865-89-4, pages 407-410. DOI: 10.5220/0002370404070410


in Bibtex Style

@conference{iceis07,
author={Vasile Paul Breşfelean and Mihaela Breşfelean and Nicolae Ghişoiu and Călin-Adrian Comes},
title={DATA MINING CLUSTERING TECHNIQUES IN ACADEMIA},
booktitle={Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2007},
pages={407-410},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002370404070410},
isbn={978-972-8865-89-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - DATA MINING CLUSTERING TECHNIQUES IN ACADEMIA
SN - 978-972-8865-89-4
AU - Paul Breşfelean V.
AU - Breşfelean M.
AU - Ghişoiu N.
AU - Comes C.
PY - 2007
SP - 407
EP - 410
DO - 10.5220/0002370404070410