FUZZY INTERVAL NUMBER (FIN) TECHNIQUES FOR MULTILINGUAL AND CROSS LANGUAGE INFORMATION RETRIEVAL

Theodoros Alevizos, Vassilis G. Kaburlasos, Stelios Papadakis, Christos Skourlas, Petros Belsis

Abstract

Fuzzy Interval Numbers (FINs) could be seen as a set of techniques applied in Fuzzy System applications. In this paper, we propose a series of techniques to solve multi-Lingual and Cross Language Information Retrieval (CLIR) problems, based on Fuzzy Interval Numbers (FINs). Some experiments showing the importance of these techniques in the CLIR-systems are briefly described and discussed. Our method is evaluated using monolingual and bilingual public bibliographic data extracted from the National Archive of the Greek National Documentation Centre. All the experiments were conducted with and without the use of stemming, stop-words and other language dependent (pre-) processing techniques. It seems that a main advantage of our approach is that the method is language independent and there is also no need for any text pre-processing or higher level processing, avoiding thus the use of taggers, parsers, feature selection strategies, or the use of other language dependent NLP tools.

References

  1. Radecki,T (1979), “Fuzzy Set Theoretical Approach to Document Retrieval” in Information Processing and Management, v.15, Pergammon-Press 1979.
  2. Kraft, D.H. and D.A. Buell (1993), “Fuzzy Set and Generalized Boolean Retrieval Systems” in Readings in Fuzzy Sets for Intelligent Systems, D. Dubius, H.Prade, R.R. Yager (eds).
  3. Kaburlasos, V.G. (2004), “Fuzzy Interval Numbers (FINs): Lattice Theoretic Tools for Improving Prediction of Sugar Production from Populations of Measurements,” IEEE Trans. on Man, Machine and Cybernetics - Part B, vol. 34, no 2, pp. 1017-1030.
  4. Petridis, V. and V.G. Kaburlasos (2003), “FINkNN: A Fuzzy Interval Number k-Near-est Neighbor Classifier for prediction of sugar production from populations of samples,” Journal of Machine Learning Research, vol. 4 (Apr), pp. 17-37, 2003
  5. Kaburlasos and Petridis (2000), Fuzzy Lattice Neurocomputing models, Neural Networks, 13(10), 1145-1170.
  6. Petridis and Kaburlasos (1998), Fuzzy lattice neural network (FLNN): A hybrid model for learning, IEEE Trans. Neural Networks, 9(5), 877-890.
  7. Petridis and Kaburlasos (2000), An intelligent mechatronics solution for automated tool guidance in the epidural surgical procedure, Proc. 7th Annual conf. Mechatronics and Machine Vision in Practice, pp 201- 206.
  8. Petridis and Kaburlasos (2001), Clustering and classification in structured data domains using Fuzzy Lattice Neurocomputing, IEEE Trans. Knowledge Data Engineering, 13(2), 245-260, 2001
  9. Kaburlasos et al (1997), Automatic detection of bine breakthrough in orthopedics by fuzzy lattice reasoning: The case of drilling in the osteosynthesis of long bones, Proc. Mechatronics Computer systems for Perception and Action, pp 33-40.
  10. Athanassiadis and Mitkas (2003), Applying machine learning techniques on air quality data for real-time decision support, Proc. Intl. NAISO Symposium on Information Technologies in Environmental Engineering.
  11. Kaburlasos V.G., Spais V, Petridis V, Petrou L, Kazarlis S, Maslaris N, and Kallinakis A, Intelligent clustering techniques for prediction of sugar production, Mathematics and Computers in Simulation, 60(3-5), 159-168, 2002
  12. Kaburlasos V.G. Papadakis S. (2005) granular Self Organizing Map (grSOM) neural network for industrial quality control, Proc of SPIE, Mathematical Methods in Pattern and Image Analysis, 2005
  13. Marinagi, Alevisos, Kaburlasos, Skourlas, Fuzzy Interval Number (FIN) Techniques for Cross Language Information Retrieval, Proc. 8th ICEIS, 2006
Download


Paper Citation


in Harvard Style

Alevizos T., G. Kaburlasos V., Papadakis S., Skourlas C. and Belsis P. (2007). FUZZY INTERVAL NUMBER (FIN) TECHNIQUES FOR MULTILINGUAL AND CROSS LANGUAGE INFORMATION RETRIEVAL . In Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-972-8865-89-4, pages 348-355. DOI: 10.5220/0002401503480355


in Bibtex Style

@conference{iceis07,
author={Theodoros Alevizos and Vassilis G. Kaburlasos and Stelios Papadakis and Christos Skourlas and Petros Belsis},
title={FUZZY INTERVAL NUMBER (FIN) TECHNIQUES FOR MULTILINGUAL AND CROSS LANGUAGE INFORMATION RETRIEVAL},
booktitle={Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2007},
pages={348-355},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002401503480355},
isbn={978-972-8865-89-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - FUZZY INTERVAL NUMBER (FIN) TECHNIQUES FOR MULTILINGUAL AND CROSS LANGUAGE INFORMATION RETRIEVAL
SN - 978-972-8865-89-4
AU - Alevizos T.
AU - G. Kaburlasos V.
AU - Papadakis S.
AU - Skourlas C.
AU - Belsis P.
PY - 2007
SP - 348
EP - 355
DO - 10.5220/0002401503480355