Validating Reasoning Heuristics Using Next-Generation Theorem-Provers

Paul S. Steyn, John A. van der Poll

Abstract

The specification of enterprise information systems using formal specification languages enables the formal verification of these systems. Reasoning about the properties of a formal specification is a tedious task that can be facilitated much through the use of an automated reasoner. However, set theory is a corner stone of many formal specification languages and poses demanding challenges to automated reasoners. To this end a number of heuristics has been developed to aid the Otter theorem prover in finding short proofs for set theoretic problems. This paper investigates the applicability of these heuristics to a next generation theorem prover Vampire.

References

  1. Abriel, J-R. 1996. The B Book: Assigning Programs to Meanings. Cambridge University Press.
  2. Bundy, A. 1999. A Survey of Automated Deduction. Tech. Rep. EDI-INF-RR-0001, Division of Informatics, University of Edinburgh. April.
  3. Enderton, H. 1977. Elements of Set Theory. Academic Press, Inc.
  4. Hamilton A. G. 1991. Logic for Mathematicians. Revised edition. Cambridge University Press.
  5. Leitsch A. 1997. The resolution calculus. Springer-Verlag, New York.
  6. McCune, W. W. 2003. OTTER 3.3 Reference Manual. Argonne National Laboratory, Argonne, Illinois. ANL/MCS-TM-263.
  7. Pelletier, F. J., Sutcliffe, G., and Suttner, C. 2002. The development of CASC. AI Communications 15(2), 79-90.
  8. Potter, B., Sinclair, J. and Till D., An Introduction to Formal Specification and Z, Prentice Hall, 1996.
  9. Quaife, A. 1992. Automated Development of Fundamental Mathematical Theories. Automated Reasoning Series. Kluwer Academic Publishers.
  10. Riazanov, A. 2003. Implementing an Efficient Theorem Prover. Ph.D. thesis, University of Manchester.
  11. Riazanov, A. and Voronkov, A. 2003. Limited resource strategy in resolution theorem proving. Journal of Symbolic Computing 36(1-2), 101-115
  12. Riazanov, A. and Voronkov, A. 2002. The design and implementation of VAMPIRE. AI Communications 15(2), 91-110.
  13. Spivey, J. M. 1992. The Z Notation: A Reference Manual, 2nd ed. Prentice-Hall, London.
  14. Tammet, T. 1997. Gandalf. Journal of Automated Reasoning 18(2), 199-204.
  15. van der Poll, J. A. 2000. Automated Support for Set-Theoretic Specifications. Ph.D. thesis, University of South Africa.
  16. van der Poll, J. A. and Labuschagne, W. A. 1999. Heuristics for Resolution-Based SetTheoretic Proofs. South African Computer Journal Issue 23, 3 - 17.
  17. Wos, L. 2006. Milestones for automated reasoning with OTTER. International Journal on Artificial Intelligence Tools, 15 (1): 3 - 19, February.
Download


Paper Citation


in Harvard Style

S. Steyn P. and A. van der Poll J. (2007). Validating Reasoning Heuristics Using Next-Generation Theorem-Provers . In Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems - Volume 1: MSVVEIS, (ICEIS 2007) ISBN 978-972-8865-95-5, pages 43-52. DOI: 10.5220/0002425900430052


in Bibtex Style

@conference{msvveis07,
author={Paul S. Steyn and John A. van der Poll},
title={Validating Reasoning Heuristics Using Next-Generation Theorem-Provers},
booktitle={Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems - Volume 1: MSVVEIS, (ICEIS 2007)},
year={2007},
pages={43-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002425900430052},
isbn={978-972-8865-95-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems - Volume 1: MSVVEIS, (ICEIS 2007)
TI - Validating Reasoning Heuristics Using Next-Generation Theorem-Provers
SN - 978-972-8865-95-5
AU - S. Steyn P.
AU - A. van der Poll J.
PY - 2007
SP - 43
EP - 52
DO - 10.5220/0002425900430052