Transductive Support Vector Machines for Risk Recognition of Sustained Ventricular Tachycardia and Flicker after Myocardial Infarction

Stanisław Jankowski, Ewa Piątkowska-Janko, Zbigniew Szymański, Artur Oręziak

Abstract

This paper presents the improved recognition of patients with sustained ventricular tachycardia and flicker after myocardial infarction based on signal averaged electrocardiography. The novel approach includes: new filtering technique, extended signal description by a set of 9 parameters and the application of transductive support vector machine classifier. The dataset consists of 376 patients selected and commented by cardiologists of the Warsaw Medical University. The best score 94% of successful recognition on the test set was obtained for signals filtered by FIR method, described by 9 parameters.

References

  1. AHCPR 1998: U.S. Department of Health and Human Services, Public Health Service, Agency for Healthcare Policy and Research (AHCPR). Signal-averaged electrocardiography. Health Technology Assessment No. 11. AHCPR Pub. No. 98-0020. Rockville (MD): AHCPR; 1998 May
  2. Bennett K., A. Demiriz: Semi-supervised support vector machines, Advances in Neural Information Processing Systems NIPS 12, MIT Press, 1998, 368-374
  3. Breithardt G., Cain M., El-Sherif N., et al. Standards for analysis of ventricular late potentials using high resolution or signal-averaged electrocardiography. A statement by a task force committee of the European Society of Cardiology, the American Heart Association, and the American College of Cardiology. Circulation 1991. 83 (4): 1481-1488
  4. Brembilla-Perrot B. et al.: Value of non-invasive and invasive studies in patients with bundle branch block, syncope and history of myocardial infarction. Europace (2001) 3, 187-194
  5. Cain et al. ACC expert consensus document. Signal Averaged electrocardiography. J. Amer. Coll. Cardiol 1996; 27:238-49
  6. Chapelle O. , B. Schölkopf, A. Zien (eds.): Semi-Supervised Learning, MIT Press, Cambridge, 2006
  7. Collobert R., F. Sinz, J. Weston, L. Bottou: Large Scale Transductive SVMs, Journal of Machine Learning Research 7 (2006), 1687-1712
  8. Gomes J.A.: Signal averaged electrocardiography - concepts, methods and applications. Kluwer Academic Publishers, 1993
  9. Heidari H. et all: Analysis of the Sustained Ventricular Arrhythmias from SAECG Using Artificial Neural Network and Fuzzy Clustering Algorithm; Proc. 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No 1,1998
  10. Jankowski S., J. Tijink, G. Vumbaca, M. Balsi, G. Karpinski: Morphological analysis of ECG Holter recordings by support vector machines, Medical Data Analysis, Third International Symposium ISMDA 2002, Rome, Italy, October 2002, Lecture Notes in Computer Science LNCS 2526 (eds. A. Colosimo, A. Giuliani, P. Sirabella) Springer-Verlag, Berlin Heidelberg New York 2002, pp. 134-143
  11. Jankowski S., A. Oreziak, A. Skorupski, H. Kowalski, Z. Szymanski, E. Piatkowska-Janko: Computer-aided Morphological Analysis of Holter ECG Recordings Based on Support Vector Learning System, Proc. IEEE International Conference Computers in Cardiology 2003, Tessaloniki, pp. 597-600
  12. Joachims T.: Transductive Inference for text classification using support vector machines, Proc. 16th International Conference on Machine Learning ICML, San Francisco 1999, 200- 209
  13. Kasabov N., Shaoning Pang: Transductive Support Vector Machines and Application in Bioinformatics for Promoter Recognition, Neural Information Processing - Letters and Reviews, 3 (2004), 31-38
  14. Kuchar D.L., Thorburn C.W., Sammel N.L.: Prediction of serious arrhythmic events after myocardial infarction: signal averaged electrocardiogram, Holter monitoring and radionuclide-ventriculography. J. Am. Coll. Cardiol. 1987, 9, 531-538
  15. M. Kukar: Transductive reliability estimation for medical diagnosis, Artificial Intelligence in Medicine 29 (2003), 81-106
  16. Oreziak A., M. Niemczyk, E. Piatkowska-Janko, G. Opolski: Detection of Atrial Electrical Instability in Hypertensive Patients, Computers in Cardiology 30 (2003), 557-560.
  17. Oreziak A., Z. Lewandowski, E. Piatkowska-Janko, K. A. Wardyn, G. Opolski: Prediction Of Serious Ventricular Arrhythmias In Hypertensive Patients With Different Forms Of The Left Ventricular Geometry; ESC 2005, 3-7.09. 2005
  18. Piatkowska-Janko E., A. Oreziak, Z. Lewandowski, , K. A. Wardyn, G. Opolski : Prediction of the Supraventricular Arrhythmias in Hypertensive Patients with Different Forms of the Left Ventricular , Computers in Cardiology 2006 .
  19. Schölkopf B., Smola A.: Learning with Kernels, MIT Press, Cambridge, 2002
  20. Simson M B: Signal averaged electrocardiography, in Zipes DP, Jalife J. (Eds): Cardiac electrophysiology: from cell to bedside. Philadelphia: W.B. Saunders Co., 1990. pp 807- 817
  21. V. N. Vapnik: Statistical Learning Theory, Wiley Interscience, New York 1998
Download


Paper Citation


in Harvard Style

Jankowski S., Piątkowska-Janko E., Szymański Z. and Oręziak A. (2007). Transductive Support Vector Machines for Risk Recognition of Sustained Ventricular Tachycardia and Flicker after Myocardial Infarction . In Proceedings of the 7th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2007) ISBN 978-972-8865-93-1, pages 161-170. DOI: 10.5220/0002429501610170


in Bibtex Style

@conference{pris07,
author={Stanisław Jankowski and Ewa Piątkowska-Janko and Zbigniew Szymański and Artur Oręziak},
title={Transductive Support Vector Machines for Risk Recognition of Sustained Ventricular Tachycardia and Flicker after Myocardial Infarction},
booktitle={Proceedings of the 7th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2007)},
year={2007},
pages={161-170},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002429501610170},
isbn={978-972-8865-93-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2007)
TI - Transductive Support Vector Machines for Risk Recognition of Sustained Ventricular Tachycardia and Flicker after Myocardial Infarction
SN - 978-972-8865-93-1
AU - Jankowski S.
AU - Piątkowska-Janko E.
AU - Szymański Z.
AU - Oręziak A.
PY - 2007
SP - 161
EP - 170
DO - 10.5220/0002429501610170