CORNER DETECTION WITH MINIMAL EFFORT ON MULTIPLE SCALES

Ernst D. Dickmanns

Abstract

Based on results of fitting linearly shaded blobs to rectangular image regions a new corner detector has been developed. A plane with least sum of errors squared is fit to the intensity distribution within a mask having four mask elements of same rectangular shape and size. Averaged intensity values in these mask elements allow very efficient simultaneous computation of pyramid levels and a new corner criterion at the center of the mask on these levels. The method is intended for real-time application and has thus been designed for minimal computing effort. It nicely fits into the ‘Unified Blob-edge-corner Method’ (UBM) developed recently. Results are given for road scenes.

References

  1. Birchfield, S., 1994. KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker.
  2. Darian-Smith, I., (ed) 1984. Handbook of Physiology, American Physiological Society: Sensory Processes, Vol. III, Parts 1 and 2.
  3. Dickmanns ED., 2007. Dynamic Vision for Perception and Control of Motion. Springer-Verlag, London.
  4. Drummond, T., Cipolla, R., 2002. Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):932- 946.
  5. Harris, C., Stephens, M., 1988. A combined corner and edge detector. In: Alvey Vision Conference, pp 147- 151.
  6. Haralick, R.M., Shapirom L.G., 1993. Computer and Robot Vision. Addison-Wesley.
  7. Hofmann, U., 2004. Zur visuellen Umfeldwahrnehmung autonomer Fahrzeuge. Diss., UniBw Munich, LRT
  8. http://users.fmrib.ox.ac.uk users.fmrib.ox.ac.uk/steve/susan/susan/node11.html.
  9. Lowe, D., 2004. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-l10.
  10. Moravec, H., 1979. Visual Mapping by a Robot Rover. Proc. IJCAI 1079: 593-600.
  11. Rosten, E., Drummond, T., 2004. Fusing Points and Lines for High Performance Tracking. ICCV, pp. 1508-1511.
  12. Shi, J., Tomasi, C., 1994. Good Features to Track. Proc. IEEE-Conf. CVPR, pp. 593-600
  13. Smith, S., Brady, J., 1997. SUSAN - a new approach to low level image processing. International Journal of Computer Vision, 23(l):45-78.
  14. Tomasi, C., Kanade, T., 1991. Detection and Tracking of Point Features. CMU, Tech. Rep. CMU-CS-91-152, Pittsburgh, PA.
  15. USC IRIS, Vision Bib.com. Annotated Computer Vision Bibliography. Section 6.4.4.7: “Corner Feature Detection Techniques and Use”.
Download


Paper Citation


in Harvard Style

Dickmanns E. (2008). CORNER DETECTION WITH MINIMAL EFFORT ON MULTIPLE SCALES . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 315-320. DOI: 10.5220/0001070703150320


in Bibtex Style

@conference{visapp08,
author={Ernst D. Dickmanns},
title={CORNER DETECTION WITH MINIMAL EFFORT ON MULTIPLE SCALES},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={315-320},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001070703150320},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - CORNER DETECTION WITH MINIMAL EFFORT ON MULTIPLE SCALES
SN - 978-989-8111-21-0
AU - Dickmanns E.
PY - 2008
SP - 315
EP - 320
DO - 10.5220/0001070703150320