AUTOMATED OBJECT SHAPE MODELLING BY CLUSTERING OF WEB IMAGES

Giuseppe Scardino, Ignazio Infantino, Salvatore Gaglio

Abstract

The paper deals with the description of a framework to create shape models of an object using images from the web. Results obtained from different image search engines using simple keywords are filtered, and it is possible to select images viewing a single object owning a well-defined contour. In order to have a large set of valid images, the implemented system uses lexical web databases (e.g. WordNet) or free web encyclopedias (e.g. Wikipedia), to get more keywords correlated to the given object. The shapes extracted from selected images are represented by Fourier descriptors, and are grouped by K-means algorithm. Finally, the more representative shapes of main clusters are considered as prototypical contours of the object. Preliminary experimental results are illustrated to show the effectiveness of the proposed approach.

References

  1. Del Bimbo, A. and Pala, P. (1997). Visual image retrieval by elastic matching of user sketches. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19 (no. 2), pp. 121-132.
  2. Fergus, R., Fei-Fei, L., Perona, P., and Zisserman, A. (2005). Learning object categories from google's image search. ICCV, pages 1816-1823.
  3. Jia, L. and Wang, J. Z. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE transaction on pattern analysis and machine intelligence, vol 25, no. 9.
  4. Lee, D. J. Antani, S. and Long, L. R. (2003). Similarity measurement using polygon curve representation and fourier descriptors for shape-based vertebral image retrieval. Proceedings of IS&T/SPIE Medical Imaging 2003: Image Processing, vol. SPIE 5032, pp. 1283- 1291.
  5. Oliver, A., Munoz, X., Batlle, J., Pacheco, L., and Freixenet, J. (2006). Improving clustering algorithms for image segmentation using contour and region information. Automation, Quality and Testing, Robotics, 2006 IEEE Intl. Conf., pages 315-320.
  6. Rivest, R. L. (1992). The md5 message digest algorithm. In: Internet, RFC 1321.
  7. Tieu, K. and Viola, P. (2004). Boosting image retrieval. Intl. Journal of Computer Vision, pages vol. 56(1/2), pp. 1736.
  8. Zhang, D. and Lu, G. (2002). Shape-based image retrieval using generic fourier descriptor. Signal Processing: Image Communication, vol.17, no. 10, pp. 825-848.
  9. Zinger, S., Millet, C., Mathieu, B., Grefenstette, G., Hede, P., and Moellic, P. A. (2006). Clustering and semantically filtering web images to create a large-scale image ontology. Proc. Of IS-T/SPIE 18th Symposium Electronic Imaging.
Download


Paper Citation


in Harvard Style

Scardino G., Infantino I. and Gaglio S. (2008). AUTOMATED OBJECT SHAPE MODELLING BY CLUSTERING OF WEB IMAGES . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 252-255. DOI: 10.5220/0001075002520255


in Bibtex Style

@conference{visapp08,
author={Giuseppe Scardino and Ignazio Infantino and Salvatore Gaglio},
title={AUTOMATED OBJECT SHAPE MODELLING BY CLUSTERING OF WEB IMAGES},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={252-255},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001075002520255},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - AUTOMATED OBJECT SHAPE MODELLING BY CLUSTERING OF WEB IMAGES
SN - 978-989-8111-21-0
AU - Scardino G.
AU - Infantino I.
AU - Gaglio S.
PY - 2008
SP - 252
EP - 255
DO - 10.5220/0001075002520255