MULTI-LANE VISUAL PERCEPTION FOR LANE DEPARTURE WARNING SYSTEMS

Juan M. Collado, Cristina Hilario, Arturo de la Escalera, Jose M. Armingol

Abstract

This paper presents a Road Detection and Tracking algorithm for Lane Departure Warning Systems. An inverse perspective transformation gives a bird-eye view of the road, where longitudinal road markings are detected by exploration of horizontal gradient, looking for a road marking model. Next, a parabolic lane model is fitted to road markings and tracked through a particle filter. The right and left lane boundaries are classified in three types (solid, broken or merge lane boundaries), through a Fourier analysis, and adjacent lanes are searched when broken or merge lines are detected. This gives the system the ability to automatically detect the number and type of road lanes. This ability allows to tell the difference between allowed and forbidden manoeuvres, such as crossing a solid line, and it is used by the lane departure warning system. Despite of its importance, lane boundary classification has been seldom considered in previous works. A Lane Departure Warning System launches an acoustic signal when a lane departure is detected. Warnings are suppressed when the blinkers are enabled, or when the vehicle is crossing a solid line regardless of the state of the blinkers.

References

  1. Aufrére, R., Chapuis, R., and Chausse, F. (2001). A modeldriven approach for real-time road recognition. Machine Vision and Applications, 13(2):95-107.
  2. Broggi, A., Bertozzi, M., Fascioli, A., and Conte, G. (1999). Automatic Vehicle Guidance: The Experience of the ARGO Autonomous Vehicle. World Scientific.
  3. Campbell, N. W. and Thomas, B. T. (1993). Navigation of an autonomous road vehicle using lane boundary markings. In Charnley, D., editor, Intelligent Autonomous Vehicles. IFAC International Conference on, pages 169-174. Pergamon Press.
  4. Chapuis, R., Aufrere, R., and Chausse, F. (2002). Accurate road following and reconstruction by computer vision. Intelligent Transportation Systems, IEEE Transactions on, 3(4):261-270.
  5. Guiducci, A. (1999). Parametric model of the perspective projection of a road with applications to lane keeping and 3d road reconstruction. Computer Vision and Image Understanding, 73(3):414-427.
  6. Isard, M. and Blake, A. (1998). Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1):5-28. Kluwer Academic Publishers.
  7. Isard, M. A. (1998). Visual Motion Analysis by Probabilistic Propagation of Conditional Density. PhD thesis, Oxford University.
  8. Kim, Z. (2006). Realtime lane tracking of curved local road. In Intelligent Transportation Systems, IEEE International Conference on, pages 1149-1155.
  9. Lee, J. W. (2002). A machine vision system for lanedeparture detection. Computer Vision and Image Understanding, 86(1):52-78.
  10. McCall, J. and Trivedi, M. (2006). Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. Intelligent Transportation Systems, IEEE Transactions on, 7(1):20-37.
  11. Nedevschi, S., Danescu, R., Marita, T., Oniga, F., Pocol, C., Sobel, S., Graf, T., and Schmidt, R. (2005). Driving environment perception using stereovision. In Intelligent Vehicles Symposium. Proceedings of the IEEE, pages 331-336, Las Vegas, Nevada, U.S.A.
  12. Park, J. W., Lee, J. W., and Jhang, K. Y. (2003). A lanecurve detection based on an lcf. Pattern Recognition Letters, 24(14):2301-2313.
  13. Risack, R., Klausmann, P., Küger, W., and W.Enkelmann (1998). Robust lane recognition embedded in a realtime driver assistance system. In Intelligent Vehicles Symposium. Proceedings of the IEEE, pages 35-40.
  14. Southall, B. and Taylor, C. (2001). Stochastic road shape estimation. In Computer Vision (ICCV). Proceedings of the 8th IEEE International Conference on, volume 1, pages 205-212.
  15. Wang, Y., Shen, D., and Teoh, E. K. (2000). Lane detection using spline model. Pattern Recognition Letters, 21(8):677-689. Pattern Recognition Letters, vol.21, no.8, July 2000. p. 677-689.
  16. Wang, Y., Teoh, E. K., and Shen, D. (2004). Lane detection and tracking using b-snake. Image and Vision Computing, 22:269-280.
  17. Yuille, A. L. and Coughlan, J. M. (2000). Fundamental limits of bayesian inference: order parameters and phase transitions for road tracking. Intelligent Transportation Systems, IEEE Transactions on, 22(2):160-173.
  18. Zhou, Y., Xu, R., Hu, X., and Ye, Q. (2006). A robust lane detection and tracking method based on computer vision. Measurement Science and Technology, 17(4):736-745.
Download


Paper Citation


in Harvard Style

M. Collado J., Hilario C., de la Escalera A. and M. Armingol J. (2008). MULTI-LANE VISUAL PERCEPTION FOR LANE DEPARTURE WARNING SYSTEMS . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 360-367. DOI: 10.5220/0001077903600367


in Bibtex Style

@conference{visapp08,
author={Juan M. Collado and Cristina Hilario and Arturo de la Escalera and Jose M. Armingol},
title={MULTI-LANE VISUAL PERCEPTION FOR LANE DEPARTURE WARNING SYSTEMS},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={360-367},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001077903600367},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - MULTI-LANE VISUAL PERCEPTION FOR LANE DEPARTURE WARNING SYSTEMS
SN - 978-989-8111-21-0
AU - M. Collado J.
AU - Hilario C.
AU - de la Escalera A.
AU - M. Armingol J.
PY - 2008
SP - 360
EP - 367
DO - 10.5220/0001077903600367