RELATIONS BETWEEN RECONSTRUCTED 3D ENTITIES

Nicolas Pugeault, Sinan Kalkan, Florentin Wörgötter, Emre Baseski, Norbert Krüger

Abstract

In this paper, we first propose an analytic formulation for the position’s and orientation’s uncertainty of local 3D line descriptors reconstructed by stereo. We evaluate these predicted uncertainties with Monte Carlo simulations, and study their dependency on different parameters (position and orientation). In a second part, we use this definition to derive a new formulation for inter–features distance and coplanarity. These new formulations take into account the predicted uncertainty, allowing for better robustness. We demonstrate the positive effect of the modified definitions on some simple scenarios.

References

  1. Baseski, E., Pugeault, N., Kalkan, S., Kraft, D., Wörgötter, F., and Krüger, N. (2007). A scene representation based on multi-modal 2D and 3D features. In 3D Representation for Recognition Workshop (in conjunction with ICCV).
  2. Bouguet, J.-Y. (2007). Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/ bouguetj/calib_doc/.
  3. Clarke, J. C. (1998). Modelling uncertainty: A primer. Technical report, Department of Engineering Science, Oxford University.
  4. Criminisi, A., Reid, I., and Zisserman, A. (1997). A plane measuring device. In Proceedings of the British Machine Vision Conference.
  5. Csurka, G., Zeller, C., Zhang, Z., and Faugeras, O. (1997). Characterizing the Uncertainty of the Fundamental Matrix. Computer Vision and Image Understanding, 68(1):18-36.
  6. DRIVSCO (2006-2009). DRIVSCO: Learning to Emulate Perception-Action Cycles in a Driving School Scenario (FP6-IST-FET, contract 016276-2).
  7. Durrant-Whyte, H. F. (1988). Uncertain Geometry in Robotics. IEEE Journal of Robotics and Automation, 4(1):23-31.
  8. Faugeras, O. (1993). Three-Dimensional Computer Vision. MIT Press.
  9. Förstner, W., Brunn, A., and Heuel, S. (2000). Statistically testing uncertain geometric relations. In Sommer, G., Krüger, N., and Perwass, C., editors, Mustererkennung 2000, pages 17-26. DAGM, Springer.
  10. Haralick, R. M. (2000). Propagating covariance in computer vision. In Proceedings of the Theoretical Foundations of Computer Vision, TFCV on Performance Characterization in Computer Vision, pages 95-114, Deventer, The Netherlands, The Netherlands. Kluwer, B.V.
  11. Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press.
  12. Heuel, S. and Förstner, W. (2001). Matching, reconstructing and grouping 3d lines from multiple views using uncertain projective geometry. In CVPR 7801. IEEE.
  13. Kamberova, G. and Bajcsy, R. (1998). Sensor Errors and the Uncertainties in Stereo Reconstruction. In K. Bowyer and P. Jonathon Phillips, editor, Empirical Evaluation Techniques in Computer Vision. IEEE Computer Soc. Press.
  14. Mandelbaum, R., Kamberova, G., and Mintz, M. (1998). Stereo depth estimation: a confidence interval approach.
  15. Pugeault, N., Kalkan, S., Baseski, E., Wörgötter, F., and Krüger, N. (2007). Reconstruction uncertainty and 3d relations. Technical Report 6, Maersk Mc-Kinney Moller Institute, University of Southern Denmark.
  16. Rodrìguez, J. J. and Aggarwal, J. K. (1988). Quantization error in stereo imaging. In Proceedings of the CVPR.
  17. Sabatini, S., Gastaldi, G., Solari, F., Pauwels, K., van Hulle, M., Díaz, J., Ros, E., Pugeault, N., and Krüger, N. (2006). Compact and accurate early vision processing in the harmonic space. In 2nd International Conference on Computer Vision Theory and Applications.
  18. Verri, A. and Torre, V. (1986). Absolute depth estimate in stereopsis. Journal of Optical Society of America, 3:297-299.
  19. Wolff, L. B. (1989). Accurate measurements of orientation from stereo using line correspondence. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).
Download


Paper Citation


in Harvard Style

Pugeault N., Kalkan S., Wörgötter F., Baseski E. and Krüger N. (2008). RELATIONS BETWEEN RECONSTRUCTED 3D ENTITIES . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 186-193. DOI: 10.5220/0001083901860193


in Bibtex Style

@conference{visapp08,
author={Nicolas Pugeault and Sinan Kalkan and Florentin Wörgötter and Emre Baseski and Norbert Krüger},
title={RELATIONS BETWEEN RECONSTRUCTED 3D ENTITIES},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={186-193},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001083901860193},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - RELATIONS BETWEEN RECONSTRUCTED 3D ENTITIES
SN - 978-989-8111-21-0
AU - Pugeault N.
AU - Kalkan S.
AU - Wörgötter F.
AU - Baseski E.
AU - Krüger N.
PY - 2008
SP - 186
EP - 193
DO - 10.5220/0001083901860193